Skip to main content
Log in

Macroparasite Burden of Obligate and Facultative Symbionts in Symbiotic Communities of Scleractinian Corals

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

A variety of symbionts inhabit colonies of scleractinian corals, the main component of coral reef ecosystems. Obligate symbionts spend almost their whole lives (except the pelagic larvae stage) on or in the host, while facultative symbionts are less tightly associated with the host and easily leave them when food becomes scarce and competition and predation increase. The influence of parasites on the life traits of obligate and facultative symbionts has not yet been studied. The first step in this direction is the study of basic parameters of parasite infracommunities associated with coral symbionts. It was suggested that obligate symbionts that are tightly associated with their hosts and their symbiotic communities are more often infected. An alternative hypothesis suggests that facultative symbionts are more frequently infected because they easily change habitats and consume a broad food spectrum. For several years, we studied parasites of obligate and facultative symbionts (fish, decapods crustaceans, mollusks) associated with the corals Acropora and Pocillopora in the Nha Trang Bay (South China Sea). The highest abundance and diversity of macroparasites (Monogenea, Cestoda, Trematoda, Nematoda, Copepoda) were found in facultative symbionts of corals, fish-parabionts. Obligate fish-inbionts were infected much less often (Cestoda, Trematoda, Nematoda). Obligate symbionts predominated in the invertebrate symbionts, which were also weakly infected. The low abundance and diversity of parasites in obligate symbionts suggest that there should be significant investments in antiparasitic defense, which, together with efficient antipredation defense, minimize the mortality of obligate symbionts. Their fecundity and population number are usually low. Facultative symbionts presumably suffer higher mortality than obligate symbionts, but a more intensive use of resources and higher population numbers may compensate for this. A significant increase in the infection rate with an increase in host body size is typical of facultative symbionts, which are less protected than obligate symbionts. The latter showed low infection levels in all size groups. The results suggest that the role of parasites in shaping the life strategies of symbionts is no less important than the role of predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abele, L.G. and Patton, W.K., The size of coral heads and the community biology of associated decapod crustaceans, J. Biogeogr., 1976, vol. 3, pp. 35–47.

    Article  Google Scholar 

  2. Barber, I., Hoare, D., and Krause, J., The effects of parasites on fish behavior: an evolutionary perspective and review, Rev. Fish Biol. Fish., 2000, vol. 10, pp. 131–165.

    Article  Google Scholar 

  3. Boucher, D.H., James, S., and Keeler, K.H., The ecology of mutualism, Ann. Rev. Ecol. Syst., 1982, vol. 13, pp. 315–347.

    Article  Google Scholar 

  4. Britayev, T.A. and Mikheev, V.N., Clumped spatial distribution of scleractinian corals influences the structure of their symbiotic associations, Dokl. Biol. Sci., 2013, vol. 448, no. 1, pp. 45–48.

    Article  CAS  PubMed  Google Scholar 

  5. Buck, J.C., Weinstein, S.B., and Young, H.S., Ecological and evolutionary consequences of parasite avoidance, Trends Ecol. Evol., 2018, vol. 33, no. 8, pp. 619–632.

    Article  CAS  PubMed  Google Scholar 

  6. Castro, P., Movements between coral colonies in Trapezia ferruginea (Crustacea: Brachyura), an obligate symbiont of scleractinian corals, Mar. Biol., 1978, vol. 46, no. 3, pp. 237–245.

    Article  Google Scholar 

  7. Clinchy, M., Sheriff, M.J., and Zanette, L.Y., Predator-induced stress and the ecology of fear, Funct. Ecol., 2013, vol. 27, no. 1, pp. 56–65.

    Article  Google Scholar 

  8. Dianne, L., Perrot-Minnot, M.J., Bauer, A., Gaillard, M., Léger, E., and Rigaud, T., Protection first then facilitation: a manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage, Evolution, 2011, vol. 65, no. 9, pp. 2692–2698.

    Article  PubMed  Google Scholar 

  9. Fill, A., Long, E.Y., and Finke, D.L., Non-consumptive effects of a natural enemy on a non-prey herbivore population, Ecol. Entomol., 2012, vol. 37, no. 1, pp. 43–50.

    Article  Google Scholar 

  10. Forrester, G.E. and Finley, R.J., Parasitism and a shortage of refuges jointly mediate the strength of density dependence in a reef fish, Ecology, 2006, vol. 87, no. 5, pp. 1110–1115.

    Article  PubMed  Google Scholar 

  11. Goldberg, W.M., The Biology of Reefs and Reef Organisms, Chicago: Univ. of Chicago Press, 2013.

    Book  Google Scholar 

  12. Goldshmid, R., Holzman, R., Weihs, D., and Genin, A., Aeration of corals by sleep-swimming fish, Limnol. Oceanogr., 2004, vol. 49, no. 5, pp. 1832–1839.

    Article  Google Scholar 

  13. Gopko, M.V. and Mikheev, V.N., Parasitic manipulations of the host phenotype: effects in internal and external environments, Biol. Bull. Rev., 2019, vol. 9, no. 1, pp. 1–28.

    Article  Google Scholar 

  14. Gopko, M.V., Mikheev, V.N., and Taskinen, J., Changes in host behavior caused by immature larvae of the eye fluke: evidence supporting the predation suppression hypothesis, Behav. Ecol. Sociobiol., 2015, vol. 69, no. 10, pp. 1723–1730.

    Article  Google Scholar 

  15. Gopko, M., Mironova, E., Pasternak, A., Mikheev, V., and Taskinen, J., Freshwater mussels (Anodonta anatina) reduce transmission of a common fish trematode (eye fluke, Diplostomum pseudospathaceum), Parasitology, 2017, vol. 144, no. 14, pp. 1971–1979.

    Article  CAS  PubMed  Google Scholar 

  16. Hanski, I., Metapopulation dynamics, Nature, 1998, vol. 396, pp. 41–49.

    Article  CAS  Google Scholar 

  17. Hoeksema, J.D. and Forde, S.E., A meta-analysis of factors affecting local adaptation between interacting species, Am. Nat., 2008, vol. 171, no. 3, pp. 275–290.

    Article  PubMed  Google Scholar 

  18. Holbrook, S.J., Brooks, A.J., Schmitt, R.J., and Stewart, H.L., Effects of sheltering fish on growth of their host corals, Mar. Biol., 2008, vol. 155, no. 5, pp. 521–530.

    Article  Google Scholar 

  19. Hollander, C.A., Griffith, B.N., and Zimmermann, M.R., Differences in endohelminth parasite infection between male morphotypes of bluegill sunfish (Lepomis macrochirus), J. Parasitol., 2019, vol. 105, no. 1, pp. 135–142.

    Article  PubMed  Google Scholar 

  20. Houlbrèque, F. and Ferrier-Pagès, C., Heterotrophy in tropical scleractinian corals, Biol. Rev., 2009, vol. 84, no. 1, pp. 1–17.

    Article  PubMed  Google Scholar 

  21. Kalbe, M. and Kurtz, J., Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum,Parasitology, 2006, vol. 132, pp. 105–116.

    Article  CAS  PubMed  Google Scholar 

  22. Keane, R.M. and Crawley, M.J., Exotic plant invasions and the enemy release hypothesis, Trends Ecol. Evol., 2002, vol. 17, no. 4, pp. 164–170.

    Article  Google Scholar 

  23. Koprivnikar, J. and Penalva, L., Lesser of two evils? Foraging choices in response to threats of predation and parasitism, PLoS One, 2015, vol. 10, no. 1, p. e0116569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Koprivnikar, J., Redfern, J.C., and Mazier, H.L., Variation in anti-parasite behavior and infection among larval amphibian species, Oecologia, 2014, vol. 174, no. 4, pp. 1179–1185.

    Article  PubMed  Google Scholar 

  25. Krause, J. and Ruxton, G.D., Living in Groups, Oxford: Oxford Univ. Press, 2002.

    Google Scholar 

  26. Krause, J., Loader, S.P., McDermott, J., and Ruxton, G.D., Refuge use by fish as a function of body length-related metabolic expenditure and predation risks, Proc. R. Soc. B, 1998, vol. 265, no. 1413, pp. 2373–2379.

    Article  PubMed Central  Google Scholar 

  27. Lafferty, K.D. and Morris, A.K., Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts, Ecology, 1996, vol. 77, no. 5, pp. 1390–1397.

    Article  Google Scholar 

  28. Lyons, P.J., The benefit of obligate versus facultative strategies in a shrimp–goby mutualism, Behav. Ecol. Sociobiol., 2013, vol. 67, no. 5, pp. 737–745.

    Article  Google Scholar 

  29. MacColl, A.D.C. and Chapman, S.M., Parasites can cause selection against migrants following dispersal between environments, Funct. Ecol., 2010, vol. 24, no. 4, pp. 847–856.

    Article  Google Scholar 

  30. Mekhova, E.S., Martynov, A.V., and Britayev, T.A., Host selection and host switching in Gymnolophus obscura—a symbiotic ophiuroid associated with feather stars (Crinoidea: Comatulida), Symbiosis, 2018, vol. 76, no. 3, pp. 313–320.

    Article  CAS  Google Scholar 

  31. Mikheev, V.N. and Pavlov, D.S., Nonlethal interspecific interactions among foraging fish and the concept of “triotroph,” J. Ichthyol., 2003, vol. 43, no. 2, pp. 151–167.

    Google Scholar 

  32. Mikheev, V.N. and Zykova, A.V., The role of parasites in symbiotic associations of coral fish, Dokl. Biol. Sci., 2011, vol. 440, no. 1, pp. 324–327.

    Article  CAS  PubMed  Google Scholar 

  33. Mikheev, V., Pasternak, A., Taskinen, J., and Valtonen, E.T., Parasite-induced aggression and impaired contest ability in a fish host, Parasites Vectors, 2010, vol. 3, p. 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mikheev, V.N., Pasternak, A.F., Taskinen, J., and Valtonen, E.T., Grouping facilitates avoidance of parasites by fish, Parasites Vectors, 2013, vol. 6, p. 301.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mironova, E., Gopko, M., Pasternak, A., Mikheev, V., and Taskinen, J., Trematode cercariae as prey for zooplankton: Effect on fitness traits of predators, Parasitology, 2019, vol. 146, no. 1, pp. 105–111.

    Article  PubMed  Google Scholar 

  36. Moore, J., Parasites and the Behavior of Animals, Oxford: Oxford Univ. Press, 2002.

    Google Scholar 

  37. Munday, P.L., Schubert, M., Baggio, J.A., Jones, G.P., Caley, M.J., and Grutter, A.S., Skin toxins and external parasitism of coral-dwelling gobies, J. Fish Biol., 2003, vol. 62, no. 4, pp. 976–981.

    Article  Google Scholar 

  38. Nhuyen, L.V. and Phan, H.K., Distribution and factors influencing on structure of reef fish communities in Nha Trang Bay Marine Protected Area, South-Central Vietnam, Environ. Biol. Fish., 2008, vol. 82, pp. 309–324.

    Article  Google Scholar 

  39. Patton, W.K., Community structure among the animals inhabiting the coral Pocillopora damicomis at Heron Island, Australia, in Symbiosis in the Sea, Vernberg, W.B., Ed., Columbia: Univ. of South Carolina Press, 1974, pp. 219–243.

    Google Scholar 

  40. Patton, W.K., Coral reef distribution and ecology of animals associated with branching corals (Acropora spp.) from the Great Barrier Reef, Australia, Bull. Mar. Sci., 1994, vol. 55, no. 1, pp. 193–211.

    Google Scholar 

  41. Poulin, R. and FitzGerald, G.J., Risk of parasitism and microhabitat selection in juvenile sticklebacks, Can. J. Zool., 1989, vol. 67, no. 1, pp. 14–18.

    Article  Google Scholar 

  42. Radakov, D.V., Stainost’ ryb kak ekologicheskoe yavlenie (Fish Schoaling as an Ecological Phenomenon), Moscow: Nauka, 1972.

  43. Raffel, T.R., Martin, L.B., and Rohr, J.R., Parasites as predators: unifying natural enemy ecology, Trends Ecol. Evol., 2008, vol. 23, no. 11, pp. 610–618.

    Article  PubMed  Google Scholar 

  44. Seppälä, O., Karvonen, A., and Valtonen, E.T., Parasite-induced change in host behavior and susceptibility to predation in an eye fluke–fish interaction, Anim. Behav., 2004, vol. 68, no. 2, pp. 257–263.

    Article  Google Scholar 

  45. Stella, J.S., Patchett, M.S., Hutchings, P.A., and Jones, J.P., Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance, Oceanogr. Mar. Biol. Ann. Rev., 2011, vol. 49, pp. 43–104.

    Google Scholar 

  46. Stumbo, A.D., James, C.T., Goater, C.P., and Wisenden, B.D., Shoaling as an antiparasite defence in minnows (Pimephales promelas) exposed to trematode cercariae, J. Anim. Ecol., 2012, vol. 81, no. 6, pp. 1319–1326.

    Article  PubMed  Google Scholar 

  47. Tkachenko, K.S., Britayev, T.A., Huan, N.H., Pereladov, M.V., and Latypov, Y.Y., Influence of anthropogenic pressure and seasonal upwelling on coral reefs in Nha Trang Bay (Central Vietnam), Mar. Ecol., 2016, vol. 37, no. 5, pp. 1131–1146.

    Article  Google Scholar 

  48. Vitopil, E. and Willis, B.L., Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity, Coral Reefs, 2001, vol. 20, no. 3, pp. 281–288.

    Article  Google Scholar 

  49. Weinreich, F., Benesh, D.P., and Milinski, M., Suppression of predation on the intermediate host by two trophically-transmitted parasites when uninfective, Parasitology, 2013, vol. 140, no. 1, pp. 129–135.

    Article  CAS  PubMed  Google Scholar 

  50. Werner, E.E. and Peacor, S.D., A review of trait-mediated indirect interactions in ecological communities, Ecology, 2003, vol. 84, no. 5, pp. 1083–1100.

    Article  Google Scholar 

  51. White, J.W. and Warner, R.R., Behavioral and energetic costs of group membership in a coral reef fish, Oecologia, 2007, vol. 154, pp. 423–433.

    Article  PubMed  Google Scholar 

  52. White, J.W., Samhouri, J.F., Stier, A.C., Wormald, C.L., Hamilton, S.L., and Sandin, S.A., Synthesizing mechanisms of density dependence in reef fishes: behavior, habitat configuration, and observational scale, Ecology, 2010, vol. 91, no. 7, pp. 1949–1961.

    Article  PubMed  Google Scholar 

  53. Zhokhov, A.E. and Mikheev, V.N., Symbiotic relationships of coral fish influence their infection by macroparasites, Dokl. Biol. Sci., 2015, vol. 462, no. 1, pp. 134–137.

    Article  CAS  PubMed  Google Scholar 

  54. Zhokhov, A.E., Pugacheva, M.N., and Mikheev, V.N., Parasites of fish Dascyllus reticulates (Pisces: Pomacentridae)—symbionts of scleractinian corals (Nha Trang Bay, South China Sea, Vietnam), Zool. Zh., 2017, vol. 96, no. 7, pp. 1–10.

    Google Scholar 

  55. Zikova, A.V., Britaev, T.A., Ivanenko, V.N., and Mikheev, V.N., Planktonic and symbiotic organisms in nutrition of coralobiont fish, J. Ichthyol., 2011, vol. 51, no. 9, pp. 769–775.

    Article  Google Scholar 

  56. Zykova, A.V. and Mikheev, V.N., Coral fish in symbiotic associations: benefits and risks, Biol. Bull. Rev., 2018, vol. 8, no. 1, pp. 58–66.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 18-05-00459a and 17-04-00247a, as well as the Russian-Vietnamese Tropical Research and Technology Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Mikheev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, V.N., Zhokhov, A.E. & Britaev, T.A. Macroparasite Burden of Obligate and Facultative Symbionts in Symbiotic Communities of Scleractinian Corals. Biol Bull Rev 10, 456–463 (2020). https://doi.org/10.1134/S2079086420050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086420050059

Navigation