Skip to main content
Log in

The Adaptation Role of Serine/Threonine Kinase Akt1 in Anabolism of Muscular Tissue

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The article reviews the particular qualities of the key signal component of anabolic pathways (serine/threonine kinase Akt1) in the regulation of skeletal muscle functioning, both under normal conditions and in the dystrophic process, including Duchenne’s muscular dystrophy. The current data confirm the participation of the Akt1 signal pathway in the processes of skeletal muscle regeneration, as well as in the mechanism of angiogenesis amplification, which demonstrates the great therapeutic potential of Akt1 as a target for the treatment of a wide range of hereditary and acquired neuromuscular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Akasaki, Y., Ouchi, N., Izumiya, Y., et al., Glycolytic fast-twitch muscle fiber restoration counters adverse age-related changes in body composition and metabolism, Aging Cell, 2014, vol. 13, pp. 80–91.

    Article  CAS  PubMed  Google Scholar 

  2. Altomare, D.A. and Testa, J.R., Perturbations of the Akt signaling pathway in human cancer, Oncogene, 2005, vol. 24, pp. 7455–7464.

    Article  CAS  PubMed  Google Scholar 

  3. Amoasii, L., Hnia, K., Chicanne, G., et al., Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo, J. Cell Sci., 2013, vol. 126, pp. 1806–1819.

    Article  CAS  PubMed  Google Scholar 

  4. Araki, S., Izumiya, Y., Hanatani, S., et al., Akt1-mediated skeletal muscle growth attenuates cardiac dysfunction and remodeling after experimental myocardial infarction, Circ. Heart Fail, 2012, vol. 5, pp. 116–125.

    Article  CAS  PubMed  Google Scholar 

  5. Atochin, D. and Huang, P., Protective role of Akt1-S1177 against stroke, in Adaptation Biology and Medicine: Current Trends, New Delhi: Narosa Press, 2017, pp. 167–172.

    Google Scholar 

  6. Bellacosa, A., Kumar, C.C., Di Cristofano, A., and Testa, J.R., Activation of Akt kinases in cancer: implications for therapeutic targeting, Adv. Cancer Res., 2005, vol. 94, pp. 29–86.

    Article  CAS  PubMed  Google Scholar 

  7. Blaauw, B., The Effects of Akt Overexpression in Normal and Dystrophic Skeletal Muscle, Padova: Univ. Degli Stud. Padova, 2008.

    Google Scholar 

  8. Bodine, S.C., Latres, E., Baumhueter, S., et al., Identification of ubiquitin ligases required for skeletal muscle atrophy, Science, 2001, vol. 294, pp. 1704–1708.

    Article  CAS  PubMed  Google Scholar 

  9. Boppart, M.D., Burkin, D.J., and Kaufman, S.J., Activation of Akt signaling promotes cell growth and survival in α7β1 integrin-mediated alleviation of muscular dystrophy, Biochim. Biophys. Acta, 2011, vol. 1812, no. 4, pp. 439–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brazil, D.P. and Hemmings, B.A., Ten years of protein kinase B signaling: a hard Akt to follow, Trends Biochem. Sci., 2001, vol. 26, pp. 657–664.

    Article  CAS  PubMed  Google Scholar 

  11. Brazil, D.P., Park, J., and Hemmings, B.A., PKB binding proteins. Getting in on the Akt, Cell, 2002, vol. 111, pp. 293–303.

    Article  CAS  PubMed  Google Scholar 

  12. Brodbeck, D., Cron, P., and Hemmings, B.A., A human protein kinase B[gamma] with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain, J. Biol. Chem., 1999, vol. 274, pp. 9133–9136.

    Article  CAS  PubMed  Google Scholar 

  13. Brookes, P.S., Yoon, Y., Robotham, J.L., et al., Calcium, ATP, and ROS: a mitochondrial love-hate triangle, Am. J. Physiol. Cell Physiol., 2004, vol. 287, pp. 817–833.

    Article  Google Scholar 

  14. Brugarolas, J., Lei, K., Hurley, R.L., et al., Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex, Genes Dev., 2004, vol. 18, pp. 2893–2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brunet, A., Bonni, A., Zigmond, M.J., et al., Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor, Cell, 1999, vol. 96, pp. 857–868.

    Article  CAS  PubMed  Google Scholar 

  16. Burkin, D.J., Wallace, G.Q., Nichol, K.J., et al., Enhanced expression of the α7β1 integrin reduces muscular dystrophy and restores viability in dystrophic mice, J. Cell Biol., 2001, vol. 152, pp. 1207–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Capetanaki, Y., Bloch, R.J., Kouloumenta, A., et al., Muscle intermediate filaments and their links to membranes and membranous organelles, Exp. Cell Res., 2007, vol. 313, pp. 2063–2076.

    Article  CAS  PubMed  Google Scholar 

  18. Cheung, M. and Testa, J.R., Diverse mechanisms of Akt pathway activation in human malignancy, Curr. Cancer Drug Targ., 2013, vol. 13, pp. 234–244.

    Article  CAS  Google Scholar 

  19. Clarke, B.A., Drujan, D., Willis, M.S., et al., The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle, Cell Metab., 2007, vol. 6, pp. 376–385.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen, S., Brault, J.J., Gygi, S.P., et al., During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation, J. Cell Biol., 2009, vol. 185, pp. 1083–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Csibi, A., Cornille, K., Leibovitch, M.P., et al., The translation regulatory subunit eIF3f controls the kinase-dependent mTOR signaling required for muscle differentiation and hypertrophy in mouse, PLoS One, 2010, vol. 5, no. 2, p. 8994.

    Article  CAS  Google Scholar 

  22. Deconinck, N., Tinsley, J., De Backer, F., et al., Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice, Nat. Med., 1997, vol. 3, pp. 1216–1221.

    Article  CAS  PubMed  Google Scholar 

  23. Dogra, C., Changotra, H., Wergedal, J.E., and Kumar, A., Regulation of phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B signaling pathways in dystrophin-deficient skeletal muscle in response to mechanical stretch, J. Cell Physiol., 2006, vol. 208, pp. 575–585.

    Article  CAS  PubMed  Google Scholar 

  24. Dubowitz, V., Sewry, C.A., and Oldfors, A., Muscle Biopsy: A Practical Approach, Amsterdam: Elsevier, 2013.

    Google Scholar 

  25. Durbeej, M. and Campbell, K.P., Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models, Curr. Opin. Genet. Dev., 2002, vol. 12, pp. 349–361.

    Article  CAS  PubMed  Google Scholar 

  26. Ebihara, S., Guibinga, G.H., Gilbert, R., et al., Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice, Physiol. Genomics, 2000, vol. 3, pp. 133–144.

    Article  CAS  PubMed  Google Scholar 

  27. Egerman, M.A. and Glass, D.J., Signaling pathways controlling skeletal muscle mass, Crit. Rev. Biochem. Mol. Biol., 2014, vol. 49, pp. 59–68.

    Article  CAS  PubMed  Google Scholar 

  28. Ervasti, J.M., Structure and function of the dystrophinglycoprotein complex, in Molecular Mechanisms of Muscular Dystrophies, Winder, S.J., Ed., Boca Raton: CRC Press, 2006, pp. 1–13.

    Google Scholar 

  29. Ervasti, J.M., Ohlendieck, K., Kahl, S.D., et al., Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle, Nature, 1990, vol. 345, pp. 315–319.

    Article  CAS  PubMed  Google Scholar 

  30. Fanzani, A., Conraads, V.M., Penna, F., and Martinet, W., Molecular and cellular mechanisms of skeletal muscle atrophy: an update, J. Cachexia Sarcopenia Muscle, 2012, vol. 3, pp. 163–179.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fayard, E., Tintignac, L.A., Baudry, A., and Hemmings, B.A., Protein kinase B/Akt at a glance, J. Cell Sci., 2005, vol. 118, pp. 5675–5678.

    Article  CAS  PubMed  Google Scholar 

  32. Gomes, M.D., Lecker, S.H., Jagoe, R.T., et al., Atrogin-1, a musclespecific F-box protein highly expressed during muscle atrophy, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 14440–14445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gort, E.H., Groot, A.J., Derks van de Ven, T.L., et al., Hypoxia-inducible factor-1α expression requires PI 3-kinase activity and correlates with Akt1 phosphorylation in invasive breast carcinomas, Oncogene, 2006, vol. 25, pp. 6123–6127.

    Article  CAS  PubMed  Google Scholar 

  34. Gunaratnam, L., Morley, M., Franovic, A., et al., Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(–/–) renal cell carcinoma cells, J. Biol. Chem., 2003, vol. 278, pp. 44966–44974.

    Article  CAS  PubMed  Google Scholar 

  35. Hanatani, S., Izumiya, Y., Araki, S., et al., Akt1-mediated fast/glycolytic skeletal muscle growth attenuates renal damage in experimental kidney disease, J. Am. Soc. Nephrol., 2014, vol. 25, pp. 2800–2811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hers, I., Vincent, E.E., and Tavare, J.M., Akt signalling in health and disease, Cell. Signaling, 2011, vol. 23, pp. 1515–1527.

    Article  CAS  Google Scholar 

  37. Heydemann, A. and McNally, E.M., Consequences of disrupting the dystrophin-sarcoglycan complex in cardiac and skeletal myopathy, Trends Cardiovasc. Med., 2007, vol. 17, pp. 55–59.

    Article  CAS  PubMed  Google Scholar 

  38. Hnia, K., Tronchere, H., Tomczak, K.K., et al., Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle, J. Clin. Invest., 2011, vol. 121, pp. 70–85.

    Article  CAS  PubMed  Google Scholar 

  39. Hodges, B.L., Hayashi, Y.K., Nonaka, I., et al., Altered expression of the α7β1 integrin in human and murine muscular dystrophies, J. Cell Sci., 1997, vol. 110, pp. 2873–2881.

    CAS  PubMed  Google Scholar 

  40. Hoffman, E.P., Brown, R.H., and Kunkel, L.M., Dystrophin: the protein product of the Duchenne muscular dystrophy locus, Cell, 1987, vol. 51, pp. 919–928.

    Article  CAS  PubMed  Google Scholar 

  41. Hollander, M.C., Maier, C.R., Hobbs, E.A., et al., Akt1 deletion prevents lung tumorigenesis by mutant K-ras, Oncogene, 2011, vol. 30, pp. 1812–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Izumiya, Y., Hopkins, T., Morris, C., et al., Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice, Cell Metab., 2008, vol. 7, pp. 159–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krag, T.O., Bogdanovich, S., Jensen, C.J., et al., Heregulin ameliorates the dystrophic phenotype in mdx mice, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 13856–13860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lai, K.M., Gonzalez, M., Poueymirou, W.T., et al., Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy, Mol. Cell Biol., 2004, vol. 24, pp. 9295–9304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Langenbach, K.J. and Rando, T.A., Inhibition of dystroglycan binding to laminin disrupts the PI3K/Akt pathway and survival signaling in muscle cells, Muscle Nerve, 2002, vol. 26, pp. 644–653.

    Article  CAS  PubMed  Google Scholar 

  46. Le Cras, T.D., Korfhagen, T.R., Davidson, C., et al., Inhibition of PI3K by PX-866 prevents transforming growth factoralpha-induced pulmonary fibrosis, Am. J. Pathol., 2010, vol. 176, pp. 679–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mammucari, C., Milan, G., Romanello, V., et al., FoxO3 controls autophagy in skeletal muscle in vivo, Cell Metab., 2007, vol. 6, pp. 458–471.

    Article  CAS  PubMed  Google Scholar 

  48. Michael, A., Haq, S., Chen, X., et al., Glycogen synthase kinase-3β regulates growth, calcium homeostasis, and diastolic function in the heart, J. Biol. Chem., 2004, vol. 279, pp. 21383–21393.

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen, H.H., Jayasinha, V., Xia, B., et al., Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 5616–5621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ohlendieck, K. and Campbell, K.P., Dystrophin: the protein product of the Duchenne muscular dystrophy locus, J. Cell Biol., 1991, vol. 115, pp. 1685–1694.

    Article  CAS  PubMed  Google Scholar 

  51. Pallafacchina, G., Calabria, E., Serrano, A.L., et al., A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 9213–9218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Persad, S., Attwell, S., Gray, V., et al., Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase, J. Biol. Chem., 2001, vol. 276, pp. 27462–27469.

    Article  CAS  PubMed  Google Scholar 

  53. Peter, A.K. and Crosbie, R.H., Hypertrophic response of Duchenne and limb-girdle muscular dystrophies is associated with activation of Akt pathway, Exp. Cell Res., 2006, vol. 312, pp. 2580–2591.

    Article  CAS  PubMed  Google Scholar 

  54. Pistollato, F., Rampazzo, E., Abbadi, S., et al., Molecular mechanisms of HIF-1α modulation induced by oxygen tension and BMP2 in glioblastoma derived cells, PLoS One, 2009, vol. 4, p. e6206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pong, T., Scherrer-Crosbie, M., Atochin, D.N., et al., Phosphomimetic modulation of eNOS improves myocardial reperfusion and mimics cardiac postconditioning in mice, PLoS One, 2014, vol. 9, no. 1, p. e85946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rodgers, J.T., King, K.Y., Brett, J.O., et al., mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G (Alert), Nature, 2014, vol. 510, pp. 393–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruegg, M.A. and Glass, D.J., Molecular mechanisms and treatment options for muscle wasting diseases, Ann. Rev. Pharmacol. Toxicol., 2011, vol. 51, pp. 373–395.

    Article  CAS  Google Scholar 

  58. Sandri, M., Sandri, C., Gilbert, A., et al., FoxO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy, Cell, 2004, vol. 117, pp. 399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schiaffino, S., Dyar, K.A., Ciciliot, S., et al., Mechanisms regulating skeletal muscle growth and atrophy, FEBS J., 2013, vol. 280, pp. 4294–4314.

    Article  CAS  PubMed  Google Scholar 

  60. Squire, S., Raymackers, J.M., Vandebrouck, C., et al., Prevention of pathology in mdx mice by expression of utrophin: analysis using an inducible transgenic expression system, Hum. Mol. Genet., 2002, vol. 11, pp. 3333–3344.

    Article  CAS  PubMed  Google Scholar 

  61. Stitt, T.N., Drujan, D., Clarke, B.A., et al., The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FoxO transcription factors, Mol. Cell, 2004, vol. 14, pp. 395–403.

    Article  CAS  PubMed  Google Scholar 

  62. Stupka, N., Plant, D.R., Schertzer, J.D., et al., Activated calcineurin ameliorates contraction-induced injury to skeletal muscles of mdx dystrophic mice, J. Physiol., 2006, vol. 575, pp. 645–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Takahashi, A., Kureishi, Y., Yang, J., et al., Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth, Mol. Cell Biol., 2002, vol. 22, pp. 4803–4814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takano, K., Watanabe-Takano, H., Suetsugu, S., et al., Nebulin and N-WASP cooperate to cause IGF-1-induced sarcomeric actin filament formation, Science, 2010, vol. 330, pp. 1536–1540.

    Article  CAS  PubMed  Google Scholar 

  65. Tinsley, J.M., Potter, A.C., Phelps, S.R., et al., Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene, Nature, 1996, vol. 384, pp. 349–353.

    Article  CAS  PubMed  Google Scholar 

  66. Tinsley, J., Deconinck, N., Risher, R., et al., Expression of full-length utrophin prevents muscular dystrophy in mdx mice, Nat. Med., 1998, vol. 4, pp. 1441–1444.

    Article  CAS  PubMed  Google Scholar 

  67. Tintignac, L.A., Lagirand, J., Batonnet, S., et al., Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase, J. Biol. Chem., 2005, vol. 280, no. 4, pp. 2847–2856.

    Article  CAS  PubMed  Google Scholar 

  68. Troussard, A.A., Mawji, N.M., Ong, C., et al., Conditional knock-out of integrin-linked kinase (ILK) demonstrates an essential role in PKB/Akt activation, J. Biol. Chem., 2003, vol. 278, pp. 22374–22378.

    Article  CAS  PubMed  Google Scholar 

  69. Whitmore, C. and Morgan, J., What do mouse models of muscular dystrophy tell us about the DAPC and its components? Int. J. Exp. Pathol., 2014, vol. 95, no. 6, pp. 365–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilson, E.M. and Rotwein, P., Selective control of skeletal muscle differentiation by Akt1, J. Biol. Chem., 2007, vol. 282, pp. 5106–5110.

    Article  CAS  PubMed  Google Scholar 

  71. Woolstenhulme, M.T., Conlee, R.K., Drummond, M.J., et al., Temporal response of desmin and dystrophin proteins to progressive resistance exercise in human skeletal muscle, J. Appl. Physiol., 2006, vol. 100, pp. 1876–1882.

    Article  CAS  PubMed  Google Scholar 

  72. Wu, C.L., Satomi, Y., and Walsh, K., RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome, BMC Genomics, 2017, vol. 18, no. 1, p. 181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoshida, M. and Ozawa, E., Glycoprotein complex anchoring dystrophin to sarcolemma, J. Biochem., 1990, vol. 108, pp. 748–752.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, P., Liang, X., Shan, T., et al., mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration, Biochem. Biophys. Res. Commun., 2015, vol. 463, pp. 102–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation (grant no. 17-15-01111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Sukhorukov, T. I. Baranich, D. N. Atochin or V. V. Glinkina.

Ethics declarations

Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhorukov, V.S., Baranich, T.I., Atochin, D.N. et al. The Adaptation Role of Serine/Threonine Kinase Akt1 in Anabolism of Muscular Tissue. Biol Bull Rev 8, 489–496 (2018). https://doi.org/10.1134/S2079086418060105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086418060105

Keywords:

Navigation