Skip to main content
Log in

Molecular Markers of Caspase-Dependent and Mitochondrial Apoptosis: Role in the Development of Pathology and Cellular Senescence

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The data on the molecular mechanisms of normal and pathological apoptosis are summarized. Three phases of apoptosis are distinguished: signal, effector, and degradation. The signal phase includes the extrinsic (caspase-dependent) and extrinsic (mitochondrial) pathways. Molecular markers of extrinsic and extrinsic apoptotic pathways play an important role in the diagnostics and treatment of immune, bronchopulmonary, excretory, and cardiovascular system pathologies, oncology, and senescence. This review considers the initiator caspases-8 and -9 and the effector caspase-3 as the molecular markers of the caspase-dependent apoptosis. The main molecular markers of the mitochondrial (or caspase-independent) apoptosis are p53, p21, and p16 proteins, which respond to DNA damage and are involved in cellular senescence, as well as chaperon prohibitin and flavoprotein apoptosis-inducing factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Aken van, O., Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development, Plant J., 2007, vol. 52, no. 5, pp. 850–864.

  2. Baker, D.J., Wijshake, T., and Tchkonia, T., Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders, Nature, 2011, vol. 479, no. 7372, pp. 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baris, O.R., Klose, A., Kloepper, J.E., et al., The mitochondrial electron transport chain is dispensable for proliferation and differentiation of epidermal progenitor cells, Stem Cells, 2011, vol. 29, pp. 1459–1468.

    CAS  PubMed  Google Scholar 

  4. Baryshnikov, A.Yu. and Shishkin, Yu.V., Immunologicheskie problemy apoptoza (Immunological Problems of Apoptosis), Moscow: Editorial URSS, 2002.

    Google Scholar 

  5. Bedelbaeva, K., Snyder, A., and Gourevitch, D., Lack of p21 expression links cell cycle control and appendage regeneration in mice, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 30, pp. 45–50.

    Google Scholar 

  6. Bucchieri, F., Marino Gammazza, A., Pitruzzella, A., et al., Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors, PLoS One, 2015, vol. 10, no. 3, p. e0120510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bunz, F., Dutriaux, A., Lengauer, C., et al., Requirement for p53 and p21 to sustain G2 arrest after DNA damage, Science, 1998, vol. 282, no. 5393, pp. 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  8. Chiu, C.-F., Ho, M.-Y., and Peng, J.-M., Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane, Oncogene, 2013, vol. 32, no. 6, pp. 777–787.

    Article  CAS  PubMed  Google Scholar 

  9. Coughlan, M.T., Higgins, G.C., Nguyen, T.V., et al., Deficiency in apoptosis-inducing factor recapitulates chronic kidney disease via aberrant mitochondrial homeostasis, Diabetes, 2016, vol. 65, no. 4, pp. 1085–1098.

    Article  CAS  PubMed  Google Scholar 

  10. Creagh, E.M., Caspase crosstalk: integration of apoptotic and innate immune signaling pathways, Trends Immunol., 2014, vol. 35, no. 12, pp. 631–639.

    Article  CAS  PubMed  Google Scholar 

  11. Daszkiewicz, L., Vázquez-Mateo, C., Rackov, G., et al., Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-γ production, Sci. Rep., 2015, vol. 5, pp. 76–91.

    Article  CAS  Google Scholar 

  12. Dotto, G.P., p21 (WAF1/Cip1): more than a break to the cell cycle? Biochim. Biophys. Acta, 2000, vol. 1471, no. 1, pp. M43–M56.

    CAS  PubMed  Google Scholar 

  13. Eleftheriadis, T., Pissas, G., Antoniadi, G., et al., Malate dehydrogenase-2 inhibitor LW6 promotes metabolic adaptations and reduces proliferation and apoptosis in activated human T-cells, Exp. Ther. Med., 2015, vol. 10, no. 5, pp. 1959–1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farina, B., Di Sorbo, G., Chambery, A., et al., Structural and biochemical insights of CypA and AIF interaction, Sci. Rep., 2017, vol. 7, no. 1, pp. 1138–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giannotta, M., Fragassi, G., Tamburro, A., et al., Prohibitin: a novel molecular player in KDEL receptor signaling, BioMed Res. Int., 2015, art. ID 319454.

  16. Golubev, A.M., Moskaleva, E.Yu., Severin, S.E., et al., Apoptosis in critical states, Obshch. Reanimatol., 2006, no. 2, no. 6, pp. 184–190.

  17. Gordeeva, A.V., Labas, Y.A., and Zvyagilskaya, R.A., Apoptosis in unicellular organisms: mechanisms and evolution, Biochemistry (Moscow), 2004, vol. 69, no. 10, pp. 1055–1066.

    CAS  PubMed  Google Scholar 

  18. Gubskii, Yu.I., Smert’ kletki: svobodnye radikaly, nekroz, apoptoz (Death of a Cell: Free Radicals, Necrosis, and Apoptosis), Vinnitsa: Nova Kniga, 2015.

  19. Hangen, E., Interaction between AIF and CHCHD4 regulates respiratory chain biogenesis, Mol. Cell, 2015, vol. 58, pp. 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  20. Hasan, I., Sugawara, S., Fujii, Y., et al., MytiLec, a mussel R-type lectin, interacts with surface glycan Gb3 on Burkitt’s lymphoma cells to trigger apoptosis through multiple pathways, Mar. Drugs, 2015, vol. 13, no. 12, pp. 7377–7389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ho, M.Y., Liang, C.M., and Liang, S.M., MIG-7 and phosphorylated prohibitin coordinately regulate lung cancer invasion/metastasis, Oncotarget, 2015, vol. 6, no. 1, pp. 381–393.

    PubMed  Google Scholar 

  22. Hossen, M.N., Kajimoto, K., Akita, H., et al., Therapeutic assessment of cytochrome C for the prevention of obesity through endothelial cell-targeted nanoparticulate system, Mol. Ther., 2013, vol. 21, pp. 533–541.

  23. Ising, C., Koehler, S., Brähler, S., et al., Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure, EMBO Mol. Med., 2015, vol. 3, pp. 275–287.

    Article  CAS  Google Scholar 

  24. Kaushal, G.P. and Shah, S.V., Autophagy in acute kidney injury, Kidney Int., 2016, vol. 89, no. 4, pp. 779–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kerr, J.F.R., Wyllie, A.H., and Currie, A.R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 1972, vol. 26, no. 4, pp. 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klein, J.A., Longo-Guess, C.M., and Rossmann, M.P., The harlequin mouse mutation downregulates apoptosis-inducing factor, Nature, 2002, vol. 419, pp. 367–374.

    Article  CAS  PubMed  Google Scholar 

  27. Koizumi, Y., Nagase, H., Nakajima, T., et al., Toll-like receptor 3 ligand specifically induced bronchial epithelial cell death in caspase dependent manner and functionally upregulated Fas expression, Allergol. Int., 2016, vol. 65, pp. 30–37.

    Article  Google Scholar 

  28. Kolonin, M.G., Saha, P.K., Chan, L., et al., Reversal of obesity by targeted ablation of adipose tissue, Nat. Med., 2004, vol. 10, pp. 625–632.

    Article  CAS  PubMed  Google Scholar 

  29. Krishnamurthy, J., Torrice, C., Ramsey, M.R., et al., Ink4a/Arf expression is a biomarker of aging, J. Clin. Invest., 2004, vol. 114, no. 9, pp. 1299–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, J.Y., Tokumoto, M., Hattori, Y., et al., Different regulation of p53 expression by cadmium exposure in kidney, liver, intestine, vasculature, and brain astrocytes, Toxicol. Res., 2016, vol. 32, no. 1, pp. 73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewin, B., Cassimeris, L., and Plopper, G., Cells, Burlington, Ma: Jones & Bartlett Learning, 2007.

    Google Scholar 

  32. Li, Z.-J., Yao, C., Liu, S.-F., et al., Cytotoxic effect of icaritin and its mechanisms in inducing apoptosis in human Burkitt lymphoma cell line, BioMed. Res. Int., 2014, vol. 2014, art. ID 391512.

    PubMed  PubMed Central  Google Scholar 

  33. Li, F., Chen, Q., Song, X., et al., miR-30b is involved in the homocysteine-induced apoptosis in human coronary artery endothelial cells by regulating the expression of caspase 3, Int. J. Mol. Sci., 2015, vol. 16, no. 8, pp. 682–695.

    Google Scholar 

  34. Li, J., Xiong, J., Yang, B., et al., Endothelial cell apoptosis induces TGF-β signaling-dependent host endothelial-mesenchymal transition to promote transplant arteriosclerosis, Am. J. Transplantol., 2015, vol. 15, no. 12, pp. 3095–3111.

    Article  CAS  Google Scholar 

  35. Liggett, W.H., Jr. and Sidransky, D., Role of the p16 tumor suppressor gene in cancer, J. Clin. Oncol., 1998, vol. 16, no. 3, pp. 1197–1206.

    Article  CAS  PubMed  Google Scholar 

  36. Lin, C.H., Hong, Y.C., and Kao, S.H., Aeroallergen Der p2 induces apoptosis of bronchial epithelial BEAS-2B cells via activation of both intrinsic and extrinsic pathway, Cell Biosci., 2015, vol. 5, pp. 1–11.

    Article  CAS  Google Scholar 

  37. Liu, J., Yang, J.R., Chen, X.M., et al., Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy, Am. J. Physiol. Cell Physiol., 2015, vol. 308, no. 8, pp. 621–630.

    Article  CAS  Google Scholar 

  38. Madapura, H.S., Salamon, D., Wiman, K.G., et al., cMyc-p53 feedback mechanism regulates the dynamics of T lymphocytes in the immune response, Cell Cycle, 2016, vol. 15, no. 9, pp. 1267–1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mahata, B., Biswas, S., Rayman, P., et al., GBM derived gangliosides induce T cell apoptosis through activation of the caspase cascade involving both the extrinsic and the intrinsic pathway, PLoS One, 2015, vol. 10, no. 7, p. e0134425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maiboroda, A.A., Apoptosis: genes and proteins, Sib. Med. Zh., 2013, no. 3, pp. 130–135.

  41. Martín-Caballero, J., Flores, J.M., García-Palencia, P., and Serrano, M., Tumor susceptibility of p21 (Waf1/Cip1)-deficient mice, Cancer Res., 2001, vol. 61, no. 16, pp. 6234–6238.

  42. Martynova, E.A., Apoptotic regulation of caspase activity, Russ. J. Bioorg. Chem., 2003, vol. 29, no. 5, pp. 471–495.

    Article  Google Scholar 

  43. McIlwain, D.R., Berger, T., and Mak, T.W., Caspase functions in cell death and disease, Cold Spring Harbor Perspect. Biol., 2013, vol. 5, no. 4, pp. 1–28.

    Article  CAS  Google Scholar 

  44. Milasta, S., Dillon, C.P., Sturm, O.E., et al., Apoptosis-inducing-factor-dependent mitochondrial function is required for T cell but not B cell function, Immunity, 2016, vol. 44, no. 1, pp. 88–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mishiro, K., Imai, T., Sugitani, S., et al., Diabetes mellitus aggravates hemorrhagic transformation after ischemic stroke via mitochondrial defects leading to endothelial apoptosis, PLoS One, 2014, vol. 9, no. 8, p. e103818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moskalev, A.A., Genetics of aging and life duration, Usp. Gerontol., 2009, vol. 22, no. 1, pp. 92–103.

  47. Nagy, N., Matskova, L., Kis, L.L., et al., The proapoptotic function of SAP provides a clue to the clinical picture of X-linked lymphoproliferative disease, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 11966–11971.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Novik, A.A., Kamilova, T.A., and Tsygan, V.N., Vvedenie v molekulyarnuyu biologiyu kantserogeneza (Introduction to Molecular Biology of Carcinogenesis), Moscow: GEOTAR-Media, 2005.

    Google Scholar 

  49. Pastore, D., Della-Morte, D., Coppola, A., et al., SGK-1 protects kidney cells against apoptosis induced by ceramide and TNF-α, Cell Death Dis., 2015, vol. 6, p. e1890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peng, Y.T., Chen, P., Ouyang, R.Y., and Song, L., Multifaceted role of prohibitin in cell survival and apoptosis, Apoptosis, 2015, vol. 20, no. 9, pp. 1135–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Potapnev, M.P., Autophagy, apoptosis, cell necrosis and immune recognition of own and alien, Immunologiya, 2014, vol. 35, no. 2, pp. 95–102.

    CAS  Google Scholar 

  52. Pustavoitau, A., Barodka, V., Sharpless, N.E., et al., Role of senescence marker p16 INK4a measured in peripheral blood T-lymphocytes in predicting length of hospital stay after coronary artery bypass surgery in older adults, Exp. Gerontol., 2016, vol. 74, pp. 29–36.

    Article  CAS  PubMed  Google Scholar 

  53. Read, A.P. and Strachan, T., Human Molecular Genetics, New York: Wiley, 1999, 2nd ed.

    Google Scholar 

  54. Rheinwald, J.G., Hahn, W.C., Ramsey, M.R., et al., A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status, Mol. Cell. Biol., 2002, vol. 22, no. 14, pp. 5157–1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ruiz-Magaña, M.J., Rodriguez-Vargas, J.M., Morales, J.C., et al., The DNA methyltransferase inhibitors zebularine and decitabine induce mitochondria-mediated apoptosis and DNA damage in p53 mutant leukemic T cells, Int. J. Cancer, 2011, vol. 130, pp. 1195–1207.

  56. Ruiz-Magaña, M.J., Martínez-Aguilar, R., Lucendo, E., et al., The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells, Oncotarget, 2016, vol. 7, no. 16, pp. 21875–21886.

  57. Ryzhov, S.V. and Novikov, V.V., Molecular mechanisms of apoptotic processes, Ross. Bioter. Zh., 2002, vol. 1, no. 3, pp. 27–33.

    Google Scholar 

  58. Salmena, L., Lemmers, B., Hakem, A., et al., Essential role for caspase-8 in T-cell homeostasis and T-cell-mediated immunity, Genes Dev., 2003, vol. 17, no. 7, pp. 883–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salmina, A.B., Komleva, Yu.K., Kuvacheva, N.V., et al., Inflammation and aging of the brain, Vestn. Ross. Akad. Med. Nauk, 2015, vol. 70, no. 1, pp. 17–25.

    Article  Google Scholar 

  60. Samuilov, V.D., Oleskin, A.V., and Lagunova, E.M., Programmed cell death, Biochemistry (Moscow), 2000, vol. 65, no. 8, pp. 873–887.

    CAS  PubMed  Google Scholar 

  61. Schäker, K., Bartsch, S., Patry, C., et al., The bipartite rac1 guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development, J. Biol. Chem., 2015, vol. 290, no. 10, pp. 6408–6418.

  62. Shirokova, A.V., Apoptosis. Signaling pathways and cell ion and water balance, Cell Tissue Biol., 2007, vol. 1, no. 3, pp. 215–224.

    Article  Google Scholar 

  63. Susin, S.A., Lorenzo, H.K., and Zamzami, N., Mitochondrial release of caspase-2 and -9 during the apoptotic process, J. Exp. Med., 1999, vol. 189, pp. 381–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thal, S.E., Zhu, C., Thal, S.C., et al., Role of apoptosis inducing factor (AIF) for hippocampal neuronal cell death following global cerebral ischemia in mice, Neurosci. Lett., 2011, vol. 499, pp. 1–3.

    Article  CAS  PubMed  Google Scholar 

  65. Uyanik, B., Grigorash, B.B., Goloudina, A.R., and Demidov, O.N., DNA damage-induced phosphatase Wip1 in regulation of hematopoiesis, immune system and inflammation, Cell Death Discovery, 2017, vol. 3, pp. 17–18.

    Article  Google Scholar 

  66. Vahsen, N., Candé, C., and Brière, J.J., AIF deficiency compromises oxidative phosphorylation, EMBO J., 2004, vol. 23, pp. 4679–4689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Varga, O.Yu. and Ryabkov, V.A., Apoptosis: definition, mechanisms, and role, Ekol. Chel., 2006, no. 7, pp. 28–32.

  68. Wu, G., Cai, J., Han, Y., et al., LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity, Circulation, 2014, vol. 130, no. 17, pp. 1452–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, H.B., Song, W., Chen, L.Y., et al., Differential expression and regulation of prohibitin during curcumin-induced apoptosis of immortalized human epidermal HaCaT cells, Int. J. Mol. Med., 2014, vol. 33, pp. 507–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kh. Khavinson.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diatlova, A.S., Dudkov, A.V., Linkova, N.S. et al. Molecular Markers of Caspase-Dependent and Mitochondrial Apoptosis: Role in the Development of Pathology and Cellular Senescence. Biol Bull Rev 8, 472–481 (2018). https://doi.org/10.1134/S2079086418060038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086418060038

Keywords:

Navigation