Biology Bulletin Reviews

, Volume 8, Issue 2, pp 124–141 | Cite as

Strategies for Modulation of Pharmacokinetics of Recombinant Therapeutic Proteins

  • E. A. Zvonova
  • A. A. Tyurin
  • A. A. Soloviev
  • I. V. Goldenkova-Pavlova
Article

Abstract

The review describes current approaches to the optimization of pharmacokinetic properties of pharmaceutical proteins in order to achieve the maximum therapeutic effect. Examples of such technologies, including PEGylation, PEG mimetics, glycosylation, protein–protein fusion, and their advantages and limitations are discussed.

Keywords

pharmaceutical recombinant proteins pharmacokinetics PEGylation PEG mimetics glycosylation protein–protein fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuchowski, A., Es, T., Palczuk, N.C., and Davis, F.F., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, J. Biol. Chem., 1977, vol. 252, no. 11, pp. 3578–3581.PubMedGoogle Scholar
  2. Alvarez, P., Buscaglia, C., and Campetella, O., Improving protein pharmacokinetics by genetic fusion to simple amino acid sequences, J. Biol. Chem., 2004, vol. 279, no. 5, pp. 3375–3381.CrossRefPubMedGoogle Scholar
  3. Anderson, C., Perspective-FcRn transports albumin: relevance to immunology and medicine, Trends Immunol., 2006, vol. 27, pp. 343–348.CrossRefPubMedGoogle Scholar
  4. Ashwell, G. and Morell, A., The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol. Relat. Areas Mol. Biol., 1974, vol. 41, pp. 99–128.PubMedGoogle Scholar
  5. Avramis, V., Senser, S., and Periclou, A., A randomised comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a children’s risk cancer group study, Blood, 2002, vol. 99, pp. 1986–1994.CrossRefPubMedGoogle Scholar
  6. Bailon, P., Palleroni, A., and Schaffer, C., Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C, Bioconjugate Chem., 2001, vol. 12, no. 2, pp. 195–202.Google Scholar
  7. Bendele, A., Seely, J., Richey, C., et al., Short communication: renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins, Toxicol. Sci., 1998, vol. 42, pp. 152–157.CrossRefPubMedGoogle Scholar
  8. Binder, U. and Skerra, A., Half-life extension of therapeutic proteins via genetic fusion to recombinant PEG mimetics, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 63–80.CrossRefGoogle Scholar
  9. Booth, C. and Gaspar, H.B., Pegademase bovine (PEGADA) for the treatment of infants and children with severe combined immunodeficiency (SCID), Biol.: Targets Ther., 2009, vol. 3, pp. 349–358.Google Scholar
  10. Bouloux, P., First human exposure to FSH-CTP in hypogonadotrophic hypogonadal males, Hum. Reprod., 2001, vol. 16, pp. 1592–1597.CrossRefPubMedGoogle Scholar
  11. Broudy, V. and Lin, N., AMG531 stimulates megakaryopoiesis in vitro by binding to Mpl, Cytokine, 2004, vol. 25, no. 2, pp. 52–60.CrossRefPubMedGoogle Scholar
  12. Buscaglia, C., Alfonso, J., Campetella, O., and Frasch, A., Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood, Blood, 1999, vol. 93, pp. 2025–2032.PubMedGoogle Scholar
  13. Chapman, A., Antoniw, P., Spitali, M., et al., Therapeutic antibody fragments with prolonged in vivo half-lives, Nat. Biotechnol., 1999, vol. 17, pp. 780–783.CrossRefPubMedGoogle Scholar
  14. Chaudhury, C., Albumin binding to FcRn: distinct from the FcRn–IgG interaction, Biochemistry, 2006, vol. 45, pp. 4983–4990.CrossRefPubMedGoogle Scholar
  15. Cheng, T., Wu, P., Wu, M., et al., Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM, Bioconjugate Chem., 1999, vol. 10, pp. 520–528.CrossRefGoogle Scholar
  16. Costa, A.R., Rodrigues, M.E., Henriques, M., et al., Glycosylation: impact, control and improvement during therapeutic protein production, Crit. Rev. Biotechnol., 2014, vol. 34, no. 4, pp. 281–299.PubMedGoogle Scholar
  17. Creighton, T., Proteins: Structures and Molecular Properties, New York: W.H. Freeman, 1992. Czajkowsky, D.M., Hu, J., Shao, Z., and Pleass, R.J., Fcfusion proteins: new developments and future perspectives, EMBO Mol. Med., 2012, vol. 4, no. 10, pp. 1015–1028.Google Scholar
  18. De Vos, A., Ultsch, M., and Kossiakoff, A., Human growth hormone and extracellular domain of its receptor: crystal structure of the complex, Science, 1992, vol. 255, pp. 306–312.CrossRefPubMedGoogle Scholar
  19. DeFrees, S., Wang, Z., Xing, R., et al., GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli, Glycobiology, 2006, vol. 16, pp. 833–843.CrossRefPubMedGoogle Scholar
  20. Dumont, J., Low, S., Peters, R., and Bitonti, A., Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics, BioDrugs, 2006, vol. 3, no. 20, pp. 151–160.CrossRefGoogle Scholar
  21. Economides, A., Carpenter, L., Rudge, J., et al., Cytokine traps: multi-component, high-affinity blockers of cytokine action, Nat. Med., 2003, vol. 9, no. 1, pp. 47–52.PubMedGoogle Scholar
  22. Egrie, J., Dwyer, E., Browne, J., et al., Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin, Exp. Hematol., 2003, vol. 31, pp. 290–299.CrossRefPubMedGoogle Scholar
  23. Elliott, S., Lorenzini, T., Strickland, T., et al., Rational design of novel erythropoiesis stimulating protein (ARANESP): a super-sialated molecule with increased biological activity, Blood, 2000, vol. 96, no. 82, art. 352.Google Scholar
  24. Fares, F., Half-life extension through O-glycosylation, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 81–94.CrossRefGoogle Scholar
  25. Fee, C. and van Alstine, J.M., Prediction of the viscosity radius and the size-exclusion chromatography behavior of PEGylated proteins, Bioconjugate Chem., 2004, vol. 15, pp. 1304–1313.CrossRefGoogle Scholar
  26. Fee, C. and van Alstine, J.M., PEG-proteins: reaction engineering and separation issues, Chem. Eng. Sci., 2006, vol. 61, no. 3, pp. 924–939.CrossRefGoogle Scholar
  27. Flintegaard, T., Thygesen, P., Rahbek-Nielsen, H., et al., N-glycosylation increases the circulatory half-life of human growth hormone, Endocrinology, 2010, vol. 151, no. 11, pp. 5326–5336.CrossRefPubMedGoogle Scholar
  28. Frejd, F., Half-life extension by binding to albumin through an albumin binding domain, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 233–278.Google Scholar
  29. Gaberc-Porekar, V., Zore, I., Podobnik, B., and Menart, V., Obstacles and pitfalls in the PEGylation of therapeutic proteins, Curr. Opin. Drug Discovery Dev., 2008, vol. 11, pp. 242–250.Google Scholar
  30. Geething, N., To, W., Spink, B., et al., Gcg-XTEN: an improved glucagon capable of preventing hypoglycemia without increasing baseline blood glucose, PLoS One, 2010, vol. 4, no. 5, pp. e10175.CrossRefGoogle Scholar
  31. Graham, L.M., PEGasparaginase: a review of clinical studies, Adv. Drug Delivery Rev., 2003, vol. 10, pp. 1293–1302.CrossRefGoogle Scholar
  32. Harris, J.M. and Chess, R.B., Effect of PEGylation on pharmaceuticals, Nat. Rev. Drug Discovery, 2003, vol. 2, no. 3, pp. 214–221.CrossRefPubMedGoogle Scholar
  33. Hedayati, M.H., Norouzian, D., Aminian, M., et al., Molecular design, expression and evaluation of PASylated human recombinant erythropoietin with enhanced functional properties, Protein J., 2017, vol. 36, pp. 36–48.PubMedGoogle Scholar
  34. Hershfield, M.S., Biochemistry and immunology of poly(ethylene glycol)-modified adenosine deaminase (PEG-ADA), ACS Symp. Ser., 1997, vol. 680, pp. 145–154.CrossRefGoogle Scholar
  35. Hinton, P., Johlfs, M., Xiong, J., et al., Engineered human IgG antibodies with longer serum half-lives in primates, J. Biol. Chem., 2004, vol. 279, no. 8, pp. 6213–6216.CrossRefPubMedGoogle Scholar
  36. Hoffman, H., Throne, M., Amar, N., et al., Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies, Arthritis Rheumatol., 2008, vol. 58, no. 8, pp. 2443–2452.CrossRefGoogle Scholar
  37. Huang, C., Receptor-Fc fusion therapeutics, traps, and MIMETIBODYTM technology, Curr. Opin. Biotechnol., 2009, vol. 6, no. 20, pp. 692–699.CrossRefGoogle Scholar
  38. Huang, Y., Wen, X., Wu, Y., et al., Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer, Eur. J. Pharm. Biopharm., 2010, vol. 74, pp. 435–441.CrossRefPubMedGoogle Scholar
  39. Kinstler, O., Molineux, G., Treuheit, M., et al., Mono-Nterminal poly(ethylene glycol)-protein conjugates, Adv. Drug Delivery Rev., 2002, vol. 54, no. 4, pp. 477–485.CrossRefGoogle Scholar
  40. Kontermann, R., Half-life modulating strategies—an introduction, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 3–21.CrossRefGoogle Scholar
  41. Kozlovski, A. and Harris, J., Improvements in protein PEGylation: PEGylated interferons for treatment of hepatitis C, J. Controlled Release, 2001, vol. 72, pp. 217–224.CrossRefGoogle Scholar
  42. Kuhn, N., Schmidt, C.Q., Schlapschy, M., and Skerra, A., PASylated coversin, a C5-specific complement inhibitor with extended pharmacokinetics, shows enhanced antihemolytic activity in vitro, Bioconjugate Chem., 2016, vol. 27, pp. 2359–2371.Google Scholar
  43. Kuo, T., Baker, K., Yoshida, M., et al., Neonatal Fc receptor: from immunity to therapeutics, J. Clin. Immunol., 2010, vol. 30, pp. 777–789.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kuter, D., Bussel, J., Lyons, R., and Pullarkat, V., Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double blind randomized controlled trial, Lancet, 2008, vol. 371, pp. 395–403.CrossRefPubMedGoogle Scholar
  45. Lapolt, P., Enhanced stimulation of follicle maturation and ovulatory potential by long acting follicle-stimulating hormone agonist with extended carboxyl-terminal peptide, Endocrinology, 1992, vol. 131, pp. 2514–2520.CrossRefPubMedGoogle Scholar
  46. Lee, S. and McNemar, C., US Patent 5985263, 1999.Google Scholar
  47. Mannucci, P.M., Half-life extension technologies for haemostatic agents, J. Thromb. Haemostasis, 2015, vol. 113, no. 1, pp. 165–176.CrossRefGoogle Scholar
  48. Matzuk, M., The biological role of the carboxyl-terminal extension of human chorionic gonadotropin beta-subunit, Endocrinology, 1990, vol. 126, pp. 376–383.CrossRefPubMedGoogle Scholar
  49. Melder, R., Osborn, B., Riccobene, T., et al., Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice, Cancer Immunol., Immunother., 2005, vol. 54, pp. 535–547.CrossRefGoogle Scholar
  50. Mendler, C.T., Friedrich, L., Laitinen, I., et al., High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation, mAbs, 2015, vol. 7, pp. 96–109.CrossRefPubMedGoogle Scholar
  51. Mero, A., Schiavon, M., Veronese, F., and Pasut, G., A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone, J. Controlled Release, 2011, vol. 154, pp. 27–34.CrossRefGoogle Scholar
  52. Metzner, H., Weimer, T., and Schulte, S., Half-life extension by fusion to recombinant albumin, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 189–211.Google Scholar
  53. Monfardini, C., Schiavon, O., Caliceti, P., et al., A branched monomethoxypoly(ethylene glycol) for protein modification, Bioconjugate Chem., 1995, vol. 6, no. 1, pp. 62–69.CrossRefGoogle Scholar
  54. Morath, V., Bolze, F., Schlapschy, M., et al., PASylation of murine leptin leads to extended plasma half-life and enhanced in vivo efficacy, Mol. Pharmacol., 2015, vol. 12, pp. 1431–1442.CrossRefGoogle Scholar
  55. Morell, A., Gregoriadis, G., Scheinberg, I., et al., The role of sialic acid in determing the survival of glycoproteins in the circulation, J. Biol. Chem., 1971, vol. 246, no. 5, pp. 1461–1467.PubMedGoogle Scholar
  56. Nucci, M.L., Shorr, R., and Abuchowski, A., The therapeutic value of poly(ethylene glycol)-modified proteins, Adv. Drug Delivery Rev., 1991, vol. 6, pp. 133–151.CrossRefGoogle Scholar
  57. Nygren, P., Uhlen, M., Flodby, P., et al., In vivo stabilization of a human recombinant CD4 derivative by fusion to a serum-albumin-binding receptor, Vaccines, 1991, vol. 11, pp. 363–368.Google Scholar
  58. Pascal, V., Laffleur, B., and Cogne, M., Class-specific effector functions of therapeutic antibodies, in Antibody Methods and Protocols, Proetzel, G. and Ebersbach, H., Eds., New York: Springer-Verlag, 2012, pp. 295–319.CrossRefGoogle Scholar
  59. Pasut, G. and Veronese, F., State of the art in PEGylation: the great versatility achieved after forty years of research, J. Controlled Release, 2012, vol. 161, pp. 461–472.CrossRefGoogle Scholar
  60. Peppel, K., Crawford, D., and Beutler, B., A tumour necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity, J. Exp. Med., 1991, vol. 174, pp. 1483–1489.CrossRefPubMedGoogle Scholar
  61. Peters, R., Toby, G., Lu, Q., et al., Biochemical and functional characterisation of a recombinant monomeric factor VIII-Fc fusion protein, J. Thromb. Haemostasis, 2012, vol. 11, pp. 132–141.CrossRefGoogle Scholar
  62. Peters, T., All About Albumin: Biochemistry, Genetics, and Medical Applications, San Diego: Academic, 1996.Google Scholar
  63. Podusta, V.N., Balana, S., Sima, B.C., et al., Extension of in vivo half-life of biologically active molecules by XTEN protein polymers, J. Controlled Release, 2016, vol. 240, pp. 52–66.CrossRefGoogle Scholar
  64. Roopenian, D. and Akilesh, S., FcRn: the neonatal Fc receptor comes of age, Nat. Rev. Immunol., 2007, vol. 7, pp. 715–725.CrossRefPubMedGoogle Scholar
  65. Rosenstock, J., Reusch, J., Bush, M., et al., Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomised controlled trial exploring weekly, biweekly, and monthly dosing, Diabetes Care, 2009, vol. 32, pp. 1880–1886.PubMedGoogle Scholar
  66. Schellenberger, V., US Patent 7855279B2, 2010.Google Scholar
  67. Schellenberger, V., Wang, C.W., Geething, N.C., et al., A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner, Nat. Biotechnol., 2009, vol. 27, pp. 1186–1190.CrossRefPubMedGoogle Scholar
  68. Schlapschy, M., Theobald, I., Mack, H., et al., Fusion of a recombinant antibody fragment with a homo-aminoacid polymer: effects on biophysical properties and prolonged plasma half-life, Protein Eng., Des. Sel., 2007, vol. 20, pp. 273–284.CrossRefGoogle Scholar
  69. Schlapschy, M., Binder, U., Borger, C., et al., PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins, Protein Eng., Des. Sel., 2013, vol. 26, no. 8, pp. 1–13.CrossRefGoogle Scholar
  70. Schlesinger, P., Rodman, J., Doebber, T., et al., The role of extrahepatic tissues in the receptor-mediated plasma clearance of glycoproteins terminated by mannose or N-acetylglucosamine, Biochem. J., 1980, vol. 192, no. 2, pp. 597–606.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sherman, M., Saifer, M., and Perez-Ruiz, F., PEG-uricase in the management of treatment-resistant gout and hyperuricemia, Adv. Drug Delivery Rev., 2008, vol. 60, no. 1, pp. 59–68.CrossRefGoogle Scholar
  72. Shimamoto, G., Gegg, C., Boone, T., and Quéva, C., Peptibodies: a flexible alternative format to antibodies, mAbs, 2012, vol. 4, no. 5, pp. 586–591.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sleep, D., Cameron, J., and Evans, L., Albumin as a versatile platform for drug half-life extension, Biochim. Biophys. Acta, 2013, vol. 1830, no. 12, pp. 5526–5534.CrossRefPubMedGoogle Scholar
  74. Sola, R. and Griebenow, K., Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy, Bio- Drugs, 2010, vol. 24, no. 1, pp. 9–21.Google Scholar
  75. Stork, R., Muller, D., and Kontermann, R., A novel trifunctional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific singlechain diabody with an albumin binding domain from streptococcal protein G, Protein Eng., Des. Sel., 2007, vol. 20, no. 11, pp. 569–576.CrossRefGoogle Scholar
  76. Strober, B. and Menon, K., Alefacept for the treatment of psoriasis and other dermatological diseases, Dermatol. Ther., 2007, vol. 20, pp. 270–276.CrossRefPubMedGoogle Scholar
  77. Strohl, W.R., Fusion proteins for half-life extension of biologics as a strategy to make biobetters, BioDrugs, 2015, vol. 29, no. 4, pp. 215–239.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Subramanian, G., Fiscella, M., Lamouse-Smith, A., et al., Albinterferon a-2b: a genetic fusion protein for the treatment of chronic hepatitis C, Nat. Biotechnol., 2007, vol. 25, no. 12, pp. 1411–1419.CrossRefPubMedGoogle Scholar
  79. Takeuchi, M., Inoue, N., Strickland, T., et al., Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 7819–7822.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tibbitts, J., Canter, D., Graff, R., et al., Key factors influencing ADME properties of therapeutic proteins: a need for ADME characterization in drug discovery and development, mAbs, 2016, vol. 8, no. 2, pp. 229–245.CrossRefPubMedGoogle Scholar
  81. Tiede, A., Brand, B., Fischer, R., et al., Enchancing the pharmacokinetic properties of recombinant factor VIII: first-inhuman trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A, J. Thromb. Haemostasis, 2013, vol. 11, pp. 670–678.CrossRefGoogle Scholar
  82. Tracey, D., Klareskog, L., Sasso, E., et al., Tumor necrosis factor antagonist mechanisms of action: a comprehensive review, Pharmacol. Ther., 2008, vol. 117, no. 2, pp. 244–279.CrossRefPubMedGoogle Scholar
  83. Trussel, S., Dumelin, C., Frey, K., et al., New strategy for the extension of serum half-life of antibody fragments, Bioconjugate Chem., 2009, vol. 20, pp. 2286–2292.CrossRefGoogle Scholar
  84. Tsuda, E., Kawanishi, G., Ueda, M., et al., The role of carbohydrate in recombinant human erythropoietin, Eur. J. Biochem., 1990, vol. 188, pp. 405–411.CrossRefPubMedGoogle Scholar
  85. Vaughn, D. and Bjorkman, P., Structural basis of pHdependent antibody binding by the neonatal Fc receptor, Structure, 1998, vol. 6, pp. 63–73.CrossRefPubMedGoogle Scholar
  86. Veronese, F. and Mero, A., The impact of PEGylation on biological therapies, BioDrugs, 2008, vol. 22, no. 5, pp. 315–329.CrossRefPubMedGoogle Scholar
  87. Wang, Y.S., Youngster, S., Grace, M., et al., Structural and biological characterization of PEGylated recombinant interferon a-2b and its therapeutic implications, Adv. Drug Delivery Rev., 2002, vol. 54, no. 4, pp. 547–570.CrossRefGoogle Scholar
  88. Weimer, T., Wormsbacher, W., Kronthaler, U., et al., Prolonged in vivo half-life of factor VIIa by fusion to albumin, Thromb. Haemostasis, 2008, vol. 99, pp. 659–667.CrossRefGoogle Scholar
  89. Wylie, D.C., Voloch, M., Lee, S., et al., Carboxyalkylated histidine is a pH-dependent product of pegylation with SC-PEG, Pharm. Res., 2001, vol. 18, no. 9, pp. 1354–1360.CrossRefPubMedGoogle Scholar
  90. Yeung, Y., Wu, X., Reyes, A., et al., A therapeutic anti- VEGF antibody with increased potency independent of pharmacokinetic half-life, Cancer Res., 2010, vol. 70, no. 8, pp. 3269–3277.CrossRefPubMedGoogle Scholar
  91. Zhong, X. and Somers, W., Recent advances in glycosylation modifications in the context of therapeutic glycoproteins, in Integrative Proteomics, Leung, H.C.E., Man, T.K., and Flores, R.J., Eds., Rijeka: InTech, 2012, pp. 183–196.Google Scholar
  92. Zvonova, E., Ershov, A., Ershova, O., et al., PASylation technology improves recombinant interferon-β1b solubility, stability and biological activity, App. Microbiol. Biotech., 2017, vol. 101, pp. 1975–1987.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Zvonova
    • 1
    • 2
  • A. A. Tyurin
    • 2
    • 3
  • A. A. Soloviev
    • 2
  • I. V. Goldenkova-Pavlova
    • 3
  1. 1.Generium International Biotechnological CenterVol’ginckyRussia
  2. 2.Timiryazev Russian State Agrarian University MoscowMoscowRussia
  3. 3.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations