Skip to main content

Variability of genome size in conifers under extreme environmental conditions

Abstract

Transformation of the genome size in conifers growing in an extreme environment is manifested in the variability of the number of chromosomes, content of nuclear DNA, modulation of simple repetitive DNA sequences, specificity of the localization and activity of ribosomal DNA genes, activity of retrotransposons, induction of mutation processes, and polymorphism of chromosome rearrangements.

This is a preview of subscription content, access via your institution.

References

  • Ahuja, M.R., Polyploidy in gymnosperms: revisited, Silvae Genet., 2005, vol. 54, no. 2, pp. 59–69.

    Google Scholar 

  • Ahuja, M.R. and Neale, D., Evolution of genome size in conifers, Silvae Genet., 2005, vol. 54, no. 3, pp. 126–137.

    Google Scholar 

  • Auckland, L., Johnston, J., Price, H., and Bridgwater, F., Stability of nuclear DNA content among divergent and isolated populations of Fraser fir, Can. J. Bot., 2001, vol. 79, pp. 1375–1378.

    CAS  Google Scholar 

  • Badaeva, E.D. and Salina, E.A., Structure of genome and chromosomal analysis of the plants, Vavilov. Zh. Genet. Selekts., 2013, vol. 17, nos. 4/2, pp. 1017–1043.

    Google Scholar 

  • Bennett, M.D., Variation in genomic form in plants and its ecological implication, New Phytol., 1987, vol. 16, pp. 93–108.

    Google Scholar 

  • Bobola, M.S., Smith, D.E., and Klein, A.S., Five major nuclear chromosome repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana, Mol. Biol. Evol., 1992, vol. 9, pp. 125–137.

    CAS  PubMed  Google Scholar 

  • Boguni, F., Muratovi, E., Ballian, D., et al., Genome size stability among five subspecies of Pinus nigra Arnold sl., Environ. Exp. Bot., 2007, vol. 59, no. 3, pp. 354–360.

    Article  CAS  Google Scholar 

  • ccBoguni, F., Siljak-Yakovlev, S., Muratovi, E., and Ballian, D., Different karyotype patterns among allopathic Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics, Plant Biol., 2011, vol. 13, no. 1, pp. 194–200.

    Article  CAS  Google Scholar 

  • Borisov, Yu.M., B-chromosomes and plasticity of a species, Ekol. Genet., 2013, vol. 11, no. 2, pp. 73–83.

    Google Scholar 

  • Butorina, A.K., Evolutionary factors of wood karyotypes, Usp. Sovrem. Biol., 1989, vol. 108, no. 3.(6), pp. 342–357.

    Google Scholar 

  • Butorina, A.K. and Evstratov, N., The first detected case of amitosis in pine, For. Genet., 1996, vol. 3, no. 3, pp. 137–139.

    Google Scholar 

  • Cai, Q., Zhang, D., Liu, Z.-L., and Wang, X.-R., Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus, Ann. Bot., 2006, vol. 97, pp. 715–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho, J.P.M., B-chromosomes, in The Evolution of the Genome, Gregary, T.R., Ed., San Diego, CA: Elsevier, 2005, pp. 223–285.

    Chapter  Google Scholar 

  • Dhillon, S.S., Berlyn, G.P., and Miksche, J.P., Nuclear DNA content in populations of Pinus rigida, Am. J. Bot., 1978, vol. 65, pp. 192–196.

    Article  CAS  Google Scholar 

  • Doudrick, R.L., Heslop-Harrison, J.S., Nelson, C.D., et al., Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding, J. Hered., 1995, vol. 86, no. 4, pp. 289–296.

    Google Scholar 

  • Eckert, A.J. and Hall, B.D., Phylogeny, historical biogeography, and diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses, Mol. Phylogenet. Evol., 2006, vol. 40, pp. 166–182.

    Article  CAS  PubMed  Google Scholar 

  • El-Lakany, M.H., Sziklai, O., Berney, J.L., and De-Vescovi, M.A., Possible causes and applications of intraspecific variation in DNA contents of Douglas-fir (Pseudotsuga menziesii), Egypt. J. Genet. Cytol., 1975, vol. 4, no. 2. p. 478.

    Google Scholar 

  • Elsik, C.G. and Williams, C.G., Retroelements contribute to the excess low-copy-number DNA in pine, Mol. Genet. Genome, 2000, vol. 264, pp. 47–55.

    Article  CAS  Google Scholar 

  • Farjon, A., World Checklist and Bibliography of Conifers, Kew, UK: R. Bot. Garden, 1998.

    Google Scholar 

  • Fay, M.F., Cowan, R.S., and Leitch, I.J., The effect of DNA amount on the quality and utility of AFLP fingerprints, Ann. Bot., 2005, vol. 95, pp. 237–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feschotte, C. and Pritham, E.J., DNA transposons and the evolution of eukaryotic genomes, Annu. Rev. Genet., 2007, vol. 41, pp. 331–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen, N., Brandes, A., and Heslop-Harrison, J.S., Diversity, origin and distribution of retrotransposons (gypsy and copia) in conifers, Mol. Biol. Evol., 2001, vol. 18, no. 7, pp. 1176–1188.

    Article  CAS  PubMed  Google Scholar 

  • Gamalei, Yu.V., Cryophytes of Eurasia: origin and structural-functional features, Bot. Zh., 2011, vol. 96, no. 12, pp. 1521–1546.

    Google Scholar 

  • Gamalei, Yu.V. and Scheremetiev, S.N., Trends in genome evolution of the terrestrial and secondary-aquatic herbs, Tsitologiya, 2012, vol. 54, no. 6, pp. 449–458.

    Google Scholar 

  • Gerashchenkov, G.A. and Rozhnova, N.A., Mobile genetic elements in plant sex evolution, Russ. J. Genet., 2010, vol. 46, no. 11, pp. 1271–1281.

    Article  CAS  Google Scholar 

  • Garner, T.W.J., Genome size and microsatellites: the effect of nuclear size on amplification potential, Genome, 2002, vol. 45, pp. 212–215.

    Article  CAS  PubMed  Google Scholar 

  • Gernandt, D.S. and Liston, A., Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae), Am. J. Bot., 1999, vol. 86, no. 5, pp. 711–723.

    Article  CAS  PubMed  Google Scholar 

  • Goryachkina, O.V., Badaeva, E.D., Muratova, E.N., and Zelenin, A.V., Molecular cytogenetic analysis of Siberian Larix species by fluorescence in situ hybridization, Plant Syst. Evol., 2013, vol. 299, pp. 471–479.

    Article  Google Scholar 

  • Govindraju, D.R. and Cullis, C.A., Ribosomal DNA variation among populations of Pinus rigida Mill. (pitch pine) ecosystem. I. Distribution of copy numbers, Heredity, 1982, vol. 69, pp. 133–140.

    Article  Google Scholar 

  • Grif, V.G., Quantity of DNA per genome in biosystematics of the plants, Tsitologiya, 1998, vol. 40, no. 7, pp. 690–707.

    CAS  Google Scholar 

  • Grotkopp, E., Rejmanek, M., Sanderson, M., and Rost, T., Evolution of genome size in pines (Pinus ssp.) and its life history correlates: supertree analysis, Evolution, 2004, vol. 58, pp. 1705–1729.

    Article  CAS  PubMed  Google Scholar 

  • Gullis, C.A., Griessen, G.P., Gorman, S.W., and Teasdale, R.D., The 25S, 18S, and 5S ribosomal RNA genes from Pinus radiata D. Don., in Proc. 2nd Workshop IUFRO “Molecular Genetics of Forest Trees,” Working Party s2.04.06, Cheliak, W.M. and Yapa, A.C., Eds., Ottawa: Can. For. Serv., 1988, pp. 34–40.

    Google Scholar 

  • Hall, S.E., Dvorak, W., Johnston, J.S., et al., Flow cytometric analysis of DNA content for tropical and temperate New World pines, Ann. Bot., 2000, vol. 86, pp. 1081–1086.

    Article  CAS  Google Scholar 

  • Hancock, J.M., Genome size and accumulation of simple sequence repeats: implications of new data from genome sequencing projects, Genetica, 2002, vol. 115, pp. 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, J.S., Grover, C.E., and Wendel, J.F., Repeated big bangs and the expanding universe: directionality in plant genome size evolution, Plant Sci., 2008, vol. 174, pp. 557–562.

    Article  CAS  Google Scholar 

  • Hembelen, V., Beridze, T.G., Bakhman, L.I., et al., Satellite DNA, Usp. Biol. Khim., 2003, vol. 43, pp. 267–306.

    Google Scholar 

  • Hizume, M., Kondo, T., Shibata, F., and Ishizuku, R., Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu strico and Sciadopityaceae, Cytologia, 2001, vol. 66, pp. 307–311.

    Google Scholar 

  • Il’inov, A.A., Raevskii, B.V., Rudkovskaya, O.A., and Topchieva, L.V., Comparative analysis of phenotypic and genetic diversity of the north-taiga less disturbed populations of (Picea × fennica), Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, 2011, no. 1, pp. 37–47.

    Google Scholar 

  • Jones, R.N., B chromosomes in plants, Plant Biosyst., 2012, vol. 146, no. 3, pp. 727–737.

    Google Scholar 

  • Joyner, K., Wang, X.-R., Johnston, J.S., et al., DNA content for Asian pines parallels New World relatives, Can. J. Bot., 2001, vol. 79, pp. 192–191.

    Google Scholar 

  • Kamm, A., Doudrick, R.L., Heslop-Harrison, J.S., and Schmidt, T., The genomic and physical organization of Ty1 copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 2708–2713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpyuk, T.V., Muratova, E.N., Vladimirova, O.S., and Sedelnikova, T.S., Karyological analysis of the Schrenk’s spruce, Lesovedenie, 2009, no. 1, pp. 52–58.

    Google Scholar 

  • Karvonen, P., Karjalainen, M., and Sovolainen, O., Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): chromosomal organization and structure, Genetica, 1993, vol. 88, pp. 59–68.

    Article  CAS  Google Scholar 

  • Khoshoo, T.N., Polyploidy in gymnosperms, Evolution, 1959, vol. 13, no. 1, pp. 24–39.

    Article  Google Scholar 

  • Knight, C.A., Molinari, N.A., and Petrov, D.A., The large genome constraint hypothesis: evolution, ecology and phenotype, Ann. Bot., 2005, vol. 95, pp. 177–190.

    Article  CAS  PubMed  Google Scholar 

  • Korshikov, I.I., Demkovich, A.E., Makogon, I.V., et al., Analysis of variability of the plus trees of the Scots pine using isoenzymes and microsatellite loci, in Faktori eksperimental’noi evolyutsii organizmiv (Factors of Experimental Evolution of Organisms), Kyiv: Logos, 2013, vol. 13, pp. 202–206.

    Google Scholar 

  • Korshikov, I.I., Tkacheva, Yu.A., and Lapteva, E.V., Cytogenetic dysfunctions of the seedlings of coniferous as the complex indicator of the influence of technogenically polluted environment, Prom. Bot., 2012, no. 12, pp. 135–141.

    Google Scholar 

  • Kossak, D.S. and Kinlaw, C.S., IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has an extensive history in pines, Plant Mol. Biol., 1999, vol. 39, pp. 417–426.

    Article  Google Scholar 

  • Kozubov, G.M. and Muratova, E.N., Sovremennye golosemennye (Modern Gymnosperms), Leningrad: Nauka, 1986.

    Google Scholar 

  • Kriebel, H.B., Molecular structure of forest trees, in Clonal Forestry I. Genetics and Biotechnology, Ahuja, M.R. and Libby, W.J., Eds., Berlin: Springer-Verlag, 1993, pp. 224–240.

    Chapter  Google Scholar 

  • Krutovskii, K.V., Prospective implementation of genomic studies in forestry, Sib. Lesn. Zh., 2014, no. 4, pp. 11–15.

    Google Scholar 

  • Kunakh, V.A., Genome variability of the plant somatic cells. 1. Variability in ontogenesis, Biopolim. Kletka, 1994, vol. 10, no. 6, pp. 5–35.

    CAS  Google Scholar 

  • Kunakh, V.A., Additional and B chromosome in the plants: origin and biological role, Visn. Ukr. Tov. Genet. Selekts., 2010, vol. 8, no. 1, pp. 99–139.

    Google Scholar 

  • Kunakh, V.A., Plasticity of genome of somatic cells and plant adaptation, in Molekulyarnaya i prikladnaya genetika (Molecular and Applied Genetics), Minsk: Inst. Genet. Tsitol., Nats. Akad. Nauk Belarus., 2011a, vol. 12, pp. 7–14.

    Google Scholar 

  • Kunakh, V.A., Ontogenetic plasticity of genome as the basis of plant adaptation, in Zhebrakovsie chteniya “Preobrazovanie genomov” (The Zhebrakov’s Conf. “Genome Transformations”), Minsk: Inst. Genet. Tsitol., Nats. Akad. Nauk Belarus., 2011b, pp. 3–53.

    Google Scholar 

  • Kunakh, V.A., Mobil’ni genetichni elementi i plastichnist’ genomu roslin (Mobile Genetic Elements and Plasticity of the Plant Genome), Kyiv: Logos, 2013.

    Google Scholar 

  • L’Homme, Y., Séguin, A., and Tremblay, F.M., Different classes of retrotransposons in coniferous spruce species, Genome, 2000, vol. 43, pp. 1084–1089.

    Article  PubMed  Google Scholar 

  • Lin, Y.Q., Bitonti, M.B., Ciolli, M., and Innocenti, A.M., Somatic mutagenesis in Pinus laricio. A cytophotomatric analysis of DNA and histone content in 2C meristematic nuclei, Caryologia, 1988, vol. 41, pp. 137–142.

    Article  CAS  Google Scholar 

  • Litvinchuk, S.N., Rozanov, Yu.M., Usmanova, N.M., et al., Variability of BM224 and Bcal7 microsatellites in populations of Bufo viridis complex different in genome size and ploidy, Tsitologiya, 2006, vol. 48, no. 4, pp. 332–345.

    CAS  Google Scholar 

  • Liu, Z-L., Cheng, Ch., and Li, J., High genetic differentiation in natural populations of Pinus henriy and Pinus tabuliformis as revealed by nuclear microsatellites, Biochem. Syst. Ecol., 2012, vol. 42, pp. 1–9. doi 10.1016/jbse.2011.07.005

    Article  CAS  Google Scholar 

  • Liu, R.Y., Vitte, C., Ma, J.X., et al., A GeneTrek analysis of the maize genome, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 11844–11849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z-L., Zhang, D., Hong, D-Y., and Wang, X-R., Chromosomal localization of 5S and 18S–5.8S–25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization, Theor. Appl. Genet., 2003, vol. 106, no. 2, pp. 198–204.

    CAS  PubMed  Google Scholar 

  • Mashkina, O.S., Kalaev, V.N., Muraya, L.S., and Lelikova, E.S., Cytogenetic reactions of seed progeny of the Scots pine on combined anthropogenic pollution in vicinity of the Novolipetsk Metallurgical Factory, Ekol. Genet., 2009, vol. 7, no. 3, pp. 17–29.

    Google Scholar 

  • Melnikova, M.N., Petrov, N.B., Lomov, A.A., la Porta, N., and Politov, D.V., Testing of microsatellite primers with different populations of Eurasian spruces Picea abies (L.) Karst. and Picea obovata Ledeb, Russ. J. Genet., 2012, vol. 48, no. 5, pp. 562–566.

    Article  CAS  Google Scholar 

  • McClintock, B., The significance of responses of the genome to challenge, Science, 1984, vol. 226, pp. 792–801.

    Article  CAS  PubMed  Google Scholar 

  • Micieta, K. and Murin, G., The use of Pinus sylvestris L. and Pinus nigra Arnold as bioindicator species for environmental pollution, in Proc. IUFRO Cytogenetics Working Party “Cytogenetic Studies of Forest Trees and Shrub Species,” Borzan, Z. and Schlarbaum, S.E., Eds., Zagreb: Hrvatske Sume, 1997, pp. 157–177.

    Google Scholar 

  • Mikshe, J.P., Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana, Can. J. Genet. Cytol., 1968, vol. 10, pp. 590–600.

    Article  Google Scholar 

  • Mikshe, J.P., Intraspecific variation of DNA per cell between Picea sitchensis (Bong.) Carr. provenances, Chromosoma, 1971, vol. 32, pp. 343–352.

    Google Scholar 

  • Miller, C.N., Mesozoic conifers, Bot. Rev., 1977, vol. 43, no. 2, pp. 217–280.

    Article  Google Scholar 

  • Moir, R.B. and Fox, D.P., Supernumerary chromosome distribution in provenances of Picea sitchensis (Bong.) Carr., Silvae Genet., 1977, vol. 26, no. 1, pp. 26–33.

    Google Scholar 

  • Morse, A.M., Peterson, D.G., Islam-Faridi, M.N., et al., Evolution of genome size and complexity in Pinus, PLoS One, 2009, vol. 4, no. 2. p. e4332. doi 10.1371/journalpone.0004332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muratova, E.N., B chromosomes of gymnosperms, Usp. Sovrem. Biol., 2000, vol. 120, no. 5, pp. 452–465.

    CAS  Google Scholar 

  • Muratova, E.N. and Kruklis, M.V., Content of DNA in gymnosperms related to their evolution, Usp. Sovrem. Biol., 1981, vol. 91, no. 1, pp. 29–48.

    CAS  Google Scholar 

  • Muratova, E.N. and Kruklis, M.V., Polyploidy, aneuploidy, and haploidy of gymnosperms, Tsitol. Genet., 1982, no. 6, pp. 56–66.

    Google Scholar 

  • Muratova, E.N. and Kruklis, M.V., Khromosomnye chisla golosemennykh rastenii (Chromosome Numbers of Gymnosperms), Novosibirsk: Nauka, 1988.

    Google Scholar 

  • Muratova, E.N. and Sedelnikova, T.S., Karyotypic variability and anomalies in populations of conifers from Siberia and Far East, in Proc. Second IUFRO Cytogenetics Working Party “Cytogenetic Studies of Forest Trees and Shrubs—Review, Present Status, and Outlook on the Future,” Zloven: Arbora, 2000, pp. 129–141.

    Google Scholar 

  • Murray, B.G., Nuclear DNA amounts in gymnosperms, Ann. Bot., 1998, vol. 82, pp. 3–15.

    Article  CAS  Google Scholar 

  • Murray, B.G., When does intraspecific C-value variation become taxonomically significant? Ann. Bot., 2005, vol. 95, pp. 119–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nechaeva, Yu.S., Boronnikova, S.V., Yusupov, R.R., and Haintze, B., Analysis of polymorphism of ISSR-markers in natural and artificial populations of larch, Fundam. Issled., 2013, no. 6, pp. 1426–1431.

    Google Scholar 

  • Nkongolo, K.K. and Mehes-Smith, M., Karyotype evolution in the Pinaceae: implication with molecular phylogeny, Genome, 2012, vol. 55, no. 10, pp. 735–753.

    Article  CAS  PubMed  Google Scholar 

  • Ohri, D., Genome size variation and plant systematics, Ann. Bot., 1998, vol. 82, pp. 75–83.

    Article  Google Scholar 

  • Ohri, D. and Khoshoo, T.N., Genome size in gymnosperms, Pol. Syst. Evol., 1986, vol. 153, pp. 119–132.

    Article  Google Scholar 

  • Oreshkova, N.V., Belokon, M.M., and Jamiyansuren, S., Genetic diversity, population structure, and differentiation of Siberian larch, Gmelin larch, and Cajander larch on SSR-marker data, Russ. J. Genet., 2013, vol. 49, no. 2, pp. 178–186.

    CAS  Google Scholar 

  • Oreshkova, N.V., Sedel’nikova, T.S., Pimenov, A.V., and Efremov, S.P., Analysis of genetic structure and differentiation of the bog and dry land populations of Pinus sibirica Du Tour based on nuclear microsatellite loci, Russ. J. Genet., 2014, vol. 50, no. 9, pp. 934–941.

    Article  CAS  Google Scholar 

  • Patrushev, L.I. and Minkevich, I.G., Problems of eukaryotic genomes, Usp. Biol. Khim., 2007, vol. 47, pp. 293–370.

    CAS  Google Scholar 

  • Peruzzi, L., Góralski, G., Joachimiak, A.J., and Bedini, G., Does actually mean chromosome number increase with latitude in vascular plants? An answer from the comparison of Italian, Slovak and Polish floras, Comp. Cytogenet., 2012, vol. 6, no. 4, pp. 371–377.

    Article  PubMed  Google Scholar 

  • Pimenov, A.V. and Sedelnikova, T.S., Anomalies of mitosis in seedlings of Pinus sylvestris (Pinaceae) on eutrophic dried peatbog, Bot. Zh., 2006, vol. 91, no. 10, pp. 1537–1544.

    Google Scholar 

  • Pimenov, A.V., Sedelnikova, T.S., and Tashev, A.N., Chromosome numbers of Pinaceae species in Bulgaria, Bot. Zh., 2012, vol. 97, no. 9, pp. 1238–1241.

    Google Scholar 

  • Price, H.J., Sparrow, A.H., and Nauman, A.F., Evolutionary and development considerations of the variability of nuclear parameters in higher plants. I. Genome volume, interphase chromosome volume, and estimated DNA content of 236 gymnosperms, in Brookhaven Symp. in Biology “Basic Mechanisms in Plant Morphogenesis,” New York, 1974, no. 25, pp. 390–421.

    CAS  Google Scholar 

  • Prokopowich, C.D., Gregory, T.R., and Crease, T.J., The correlation between rDNA copy number and genome size in eukaryotes, Genome, 2003, vol. 46, pp. 48–50.

    Article  CAS  PubMed  Google Scholar 

  • Puizina, J., Sviben, T., Kraja i Sokol, I., et al., Cytogenetic and molecular characterization of the Abies alba genome and its relationship with other members of the Pinaceae, Plant Biol., 2008, no. 10, pp. 256–267.

    Article  CAS  PubMed  Google Scholar 

  • Rake, A.V., Mikshe, R.B., Hall, R.B., and Hansen, K.M., DNA re-association kinetics of four conifers, Can. J. Genet. Cytol., 1980, vol. 22, pp. 69–79.

    Article  CAS  Google Scholar 

  • Rocheta, M., Cordeiro, J., Oliveira, M., and Miguel, C., PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster, Planta, 2007, vol. 225, pp. 551–562.

    Article  CAS  PubMed  Google Scholar 

  • Rubtsov, N.B. and Borodin, P.M., Evolution of chromosome: from A to B and back, Priroda (Moscow), 2002, no. 3, pp. 59–66.

    Google Scholar 

  • Sedelnikova, T.S., Muratova, E.N., and Pimenov, A.V., Variability of chromosome numbers in gymnosperms, Usp. Sovrem. Biol., 2010a, vol. 30, no. 6, pp. 557–568.

    Google Scholar 

  • Sedelnikova, T.S., Muratova, E.N., and Pimenov, A.V., Ecology-dependent differentiation of karyotypes of the wetland and dry land populations of Pinaceae species, Bot. Zh., 2010b, vol. 95, no. 11, pp. 1513–1520.

    Google Scholar 

  • Sedelnikova, T.S. and Pimenov, A.V., Cytogenetic features of woody plants adaptation in extreme environmental conditions, Bull. Nikitskogo Gos. Bot. Sada, 2002, no. 86, pp. 61–62.

    Google Scholar 

  • Sedel’nikova, T.S. and Pimenov, A.V., Chromosomal mutations in Siberian larch (Larix sibirica Ledeb.) on Taimyr Peninsula, Biol. Bull., 2007, vol. 34, no. 2, pp. 198–201.

    Article  Google Scholar 

  • Sedel’nikova, T.S. and Pimenov, A.V., Karyological and quantitative analysis of the redand yellow-anther forms of the Scots pine in wetland and upland ecotopes, in Faktori eksperimental’noi evolyutsii organizmiv (Factors of Experimental Evolution of Organisms), Kyiv: Logos, 2013, vol. 12, pp. 72–76.

    Google Scholar 

  • Sedelnikova, T.S., Pimenov, A.V., Grabovoi, V.N., and Ponomarenko, V.A., Chromosome number of Thuja occidentalis (Cupressaceae) cultivars in Sofievka National Dendrarium, Bot. Zh., 2014, vol. 99, no. 8, pp. 941–944.

    Google Scholar 

  • Sedelnikova, T.S., Pimenov, A.V., and Tashev, A.N., Chromosome number of Cupressaceae species at introduction in Bulgaria, Bot. Zh., 2011, vol. 96, no. 7, pp. 974–975.

    Google Scholar 

  • Sedelnikova, T.S., Pimenov, A.V., Tashev, A.N., and Efremova, T.T., Adaptive variability of genome of coniferous in extreme growing conditions, in Prats. IX zizdu Ukrains’ke tovaristvo genetikiv i selektsioneriv prisvyachenogo 125-richchyu vid dnya narozhdennya M.I. Vavilova “Dosyagnennya i problemi genetiki, selektsii ta biotekhnologii” (Proc. IX Congr. of Ukrainian Society of Geneticist and Selectionist Dedicated to 125th Anniversary of N.I. Vavilov “Achievements and Problems of Genetics, Selection, and Biotechnology”), Kyiv: Logos, 2012, vol. 4, pp. 262–267.

    Google Scholar 

  • Sederoff, R.R., Stomp, A.-M., Gwynn, B., et al., Application of DNA recombinant techniques in pines: a molecular approach to genetic engineering in forestry, in Cell and Tissue Culture in Forestry, Bonga, J.M. and Durzan, D.J., Eds., Dordrecht: Martinus Nijhoff, 1987, vol. 1, pp. 314–329.

    Article  Google Scholar 

  • Shchapova, A.I., Diversity of life cycles and their role in evolution of the base chromosome number in various types of living organisms, Vavilov. Zh. Genet. Selekts., 2013, vol. 17, no. 1, pp. 6–16.

    Google Scholar 

  • Sheikina, O.V., Demakov, Yu.P., Gladkov, Yu.F., and Unzhenina, O.V., Genetic variability and differentiation of the dry land and wetland population of Scots pine in Mari-El Republic, Nauch. Zh. Kuban. Gos. Agrar. Univ., 2013, no. 94 (10), pp. 1–12. http://ejkubagroru/2013/10pdf/54pdf

    Google Scholar 

  • Shibata, F. and Hizume, M., Comparative FISH karyotype analysis of 11 Picea species, Cytologia (Tokyo), 2008, vol. 73, no. 2, pp. 203–211.

    Article  Google Scholar 

  • Shmidt, A., Doudrick, R.L., Heslop-Harrison, J.S., and Shmidt, T., The contribution of short repeats of low sequence complexity to large conifer genomes, Theor. Appl. Genet., 2000, vol. 101, pp. 7–14.

    Article  Google Scholar 

  • Sormacheva, I.D. and Blinov, A.G., The plant LTR-retrotransposons, Vavilov. Zh. Genet. Selekts., 2011, vol. 15, no. 2, pp. 351–381.

    Google Scholar 

  • Stebbins, G.L., Chromosome Evolution in Higher Plants, London: Edward Arnold, 1971.

    Google Scholar 

  • Stuart-Rogers, C. and Flavell, A.J., The evolution of Ty1copia group retrotransposons in gymnosperms, Mol. Biol. Evol., 2001, vol. 18, pp. 155–163.

    Article  CAS  PubMed  Google Scholar 

  • Teoh, S.B. and Rees, H., B-chromosomes in white spruce, Proc. R. Soc. B, 1977, vol. 198, no. 1133, pp. 325–344.

    Article  Google Scholar 

  • Vandelight, K.K., Nkongolo, K.K., Mehes, M., and Beckett, P., Genetic analysis of Pinus banksiana and Pinus resinosa populations from stressed sites contaminated with metals in Northern Ontario (Canada), Chem. Ecol., 2011, vol. 27, no. 4, pp. 369–380. doi 10.1080/02757540.2011.561790

    Article  CAS  Google Scholar 

  • Voytas, D.F., Cummings, M.P., Koniczny, A., et al., Copialike retrotransposons are ubiquitous among plants, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, no. 15, pp. 71–24.

    Article  Google Scholar 

  • Wachowiak, W., Stephan, B.R., Schulze, I., et al., A critical evaluation of reproductive barriers between closely related species using DNA markers—a case study in Pinus, Plant. Syst. Evol., 2006, vol. 257, pp. 1–8.

    Article  CAS  Google Scholar 

  • Wakamiya, I., Newton, R.J., Johnston, J.S., and Price, H.J., Genome size and environmental factors in the genus Pinus, Am. J. Bot., 1993, vol. 80, pp. 1235–1241.

    Article  Google Scholar 

  • Wakamiya, I., Price, H.J., Messina, M.G., and Newton, R.J., Pine genome diversity and water relations, Physiol. Plant, 1996, vol. 96, pp. 13–20.

    Article  CAS  Google Scholar 

  • Wendel, J.F. and Wessler, S.R., Retrotransposon-mediated genome evolution on a local ecological scale, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 6250–6252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker, T. and Keller, B., Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families, Genome Res., 2007, vol. 17, pp. 1072–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willyard, A., Syring, J., Gernandt, D.S., et al., Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus, Mol. Biol. Evol., 2007, vol. 24, pp. 20–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Sedel’nikova.

Additional information

Original Russian Text © T.S. Sedel’nikova, 2015, published in Uspekhi Sovremennoi Biologii, 2015, Vol. 135, No. 5, pp. 514–528.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sedel’nikova, T.S. Variability of genome size in conifers under extreme environmental conditions. Biol Bull Rev 6, 177–188 (2016). https://doi.org/10.1134/S2079086416020079

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086416020079

Keywords

  • coniferous
  • extreme growing conditions
  • genome
  • chromosome number
  • DNA amount
  • simple repetitive DNA sequences
  • genes of ribosomal DNA
  • cell genetic elements
  • chromosomal rearrangements