Skip to main content
Log in

Pathology of synapses in neurological diseases

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The dysfunction and degeneration of synapses in neurological diseases have been widely discussed recently. The early clinical symptoms of these diseases are accompanied by a loss or dysfunction of synapses. These results allow us to propose the existence of common molecular and cellular mechanisms for neurological diseases that are directly linked to these processes. The article contains a detailed description of synaptic disorders in Alzheimer’s disease, Parkinson’s disease, prion diseases, Huntington’s disease, autism, and amyotrophic lateral sclerosis. The role of synaptic dysfunctions in aging is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, B.S. and Geschwind, D.H., Advances in autism genetics: on the threshold of a new neurobiology, Nat. Rev. Genet, 2008, vol. 9, pp. 341–355.

    CAS  PubMed Central  PubMed  Google Scholar 

  • André, V.M., Cepeda, C., and Levine, M.S., Dopamine and glutamate in Huntington’s disease: a balancing act, CNS Neurosci. Ther., 2010, vol. 16, pp. 163–178.

    PubMed Central  PubMed  Google Scholar 

  • Aronin, N., Chase, K., Young, C., et al., Cag expansion affects the expression of mutant huntingtin in the Huntington’s disease brain, Neuron, 1995, vol. 15, pp. 1193–1201.

    CAS  PubMed  Google Scholar 

  • Baba, M., Nakajo, S., Tu, P.H., et al., Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies, Am. J. Pathol., 1998, vol. 152, pp. 879–884.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bagetta, V., Ghiglieri, V., Sgobio, C., et al., Synaptic dysfunction in Parkinson’s disease, Biochem. Soc. Trans., 2010, vol. 38, pp. 493–497.

    CAS  PubMed  Google Scholar 

  • Balice-Gordon, R.J., Smith, D.B., Goldman, J., et al., Functional motor unit failure precedes neuromuscular degeneration in canine motor neuron disease, Ann. Neurol., 2000, vol. 47, pp. 596–605.

    CAS  PubMed  Google Scholar 

  • Bate, C., Gentleman, S., and Williams, A., α-Synuclein induced synapse damage is enhanced by amyloid-β1–42, Mol. Neurodegener., 2010, vol. 5, p. 55.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becher, M.W., Kotzuk, J.A., Sharp, A.H., et al., Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length, Neurobiol. Dis., 1998, vol. 4, pp. 387–397.

    CAS  PubMed  Google Scholar 

  • Bellani, S., Sousa, V.L., Ronzitti, G., et al., The regulation of synaptic function by alpha-synuclein, Commun. Integr. Biol., 2010, vol. 3, pp. 106–109.

    PubMed Central  PubMed  Google Scholar 

  • Belluzzi, E., Greggio, E., and Piccoli, G., Presynaptic dysfunction in Parkinson’s disease: a focus on LRRK2, Biochem. Soc. Trans., 2012, vol. 40, pp. 1111–1116.

    CAS  PubMed  Google Scholar 

  • Bence, N.F., Sampat, R.M., and Kopito, R.R., Impairment of the ubiquitinproteasome system by protein aggregation, Science, 2001, vol. 292, pp. 1552–1555.

    CAS  PubMed  Google Scholar 

  • Berg, D., Schweitzer, K., Leitner, P., et al., Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson’s disease, Brain, 2005, vol. 128, pp. 3000–3011.

    PubMed  Google Scholar 

  • Berkel, S., Marshall, C.R., Weiss, B., et al., Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation, Nat. Genet., 2010, vol. 42, pp. 489–491.

    CAS  PubMed  Google Scholar 

  • Betancur, C., Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting, Brain Res., 2011, vol. 1380, pp. 42–77.

    CAS  PubMed  Google Scholar 

  • Boillee, S., van de Velde, C., and Cleveland, D.W., ALS: a disease of motor neurons and their nonneuronal neighbors, Neuron, 2006, vol. 52, pp. 39–59.

    CAS  PubMed  Google Scholar 

  • Bonanomi, D., Benfenati, F., and Valtorta, F., Protein sorting in the synaptic vesicle life cycle, Progr. Neurobiol, 2006, vol. 80, pp. 177–217.

    CAS  Google Scholar 

  • Braak, E., Braak, H., and Mandelkow, E.M., A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads, Acta. Neuropathol., 1994, vol. 87, pp. 554–567.

    CAS  PubMed  Google Scholar 

  • Budka, H., Neuropathology of prion diseases, Br. Med. Bull., 2003, vol. 66, pp. 121–130.

    CAS  PubMed  Google Scholar 

  • Cataldo, A.M., Peterhoff, C.M., Troncoso, J.C., et al., Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations, Am. J. Pathol., 2000, vol. 157, pp. 277–286.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cepeda, C., Cummings, D.M., Andre, V.M., et al., Genetic mouse models of Huntington’s disease: focus on electrophysiological mechanisms, ASN Neuro, 2010, vol. 2.

  • Cha, J.H., Transcriptional signatures in Huntington’s disease, Prog. Neurobiol., 2007, vol. 83, pp. 228–248.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman, P.F., White, G.L., Jones, M.W., et al., Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice, Nat. Neurosci., 1999, vol. 2, pp. 271–276.

    CAS  PubMed  Google Scholar 

  • Chartier-Harlin, M.C., Kachergus, J., Roumier, C., et al., Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease, Lancet, 2004, vol. 364, pp. 1167–1169.

    CAS  PubMed  Google Scholar 

  • Chih, B., Afridi, S.K., Clark, L., and Scheiffele, P., Disorder-associated mutations lead to functional inactivation of neuroligins, Hum. Mol. Genet., 2004, vol. 13, pp. 1471–1477.

    CAS  PubMed  Google Scholar 

  • Chubykin, A.A., Liu, X., Comoletti, D., et al., Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism, J. Biol. Chem., 2005, vol. 280, pp. 22365–22374.

    CAS  PubMed  Google Scholar 

  • Citri, A. and Malenka, R.C., Synaptic plasticity: multiple forms, functions, and mechanisms, Neuropsychopharmacology, 2008, vol. 33, pp. 18–41.

    PubMed  Google Scholar 

  • Cleary, J.P., Walsh, D.M., Hofmeister, J.J., et al., Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function, Nat. Neurosci., 2005, vol. 8, pp. 79–84.

    CAS  PubMed  Google Scholar 

  • Coleman, P.D. and Yao, P.J., Synaptic slaughter in Alzheimer’s disease, Neurobiol. Aging, 2003, vol. 24, pp. 1023–1027.

    CAS  PubMed  Google Scholar 

  • Coleman, P., Federoff, H., and Kurlan, R., A focus on the synapse for neuroprotection in Alzheimer disease and other dementias, Neurology, 2004, vol. 63, pp. 1155–1162.

    PubMed  Google Scholar 

  • Courchesne, E., Karns, C.M., Davis, H.R., et al., Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study, Neurology, 2001, vol. 57, pp. 245–254.

    CAS  PubMed  Google Scholar 

  • Cunningham, C., Deacon, R., Wells, H., et al., Synaptic changes characterize early behavioral signs in the ME7 model of murine prion disease, Eur. J. Neurosci., 2003, vol. 17, pp. 2147–2155.

    CAS  PubMed  Google Scholar 

  • Cunningham, C., Deacon, R.M., Chan, K., et al., Neuropathologically distinct prion strains give rise to similar temporal profiles of behavioral deficits, Neurobiol. Dis., 2005, vol. 18, pp. 258–269.

    CAS  PubMed  Google Scholar 

  • Davidsson, P. and Blennow, K., Neurochemical dissection of synaptic pathology in Alzheimer’s disease, Int. Psychogeriatr., 1998, vol. 10, pp. 11–23.

    CAS  PubMed  Google Scholar 

  • Davies, C.A., Mann, D.M., Sumpter, P.Q., and Yates, P.O., A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease, J. Neurol. Sci., 1987, vol. 78, pp. 151–164.

    CAS  PubMed  Google Scholar 

  • Davis, K.L. and Samuels, S.C., Dementia and Delirium in Pharmacological Management of Neurological and Psychiatric Disorders, New York: McGraw-Hill, 1998.

    Google Scholar 

  • Dawson, T.M. and Dawson, V.L., Molecular pathways of neurodegeneration in Parkinson’s disease, Science, 2003, vol. 302, pp. 819–822.

    CAS  PubMed  Google Scholar 

  • Dawson, T.M., Ko, H.S., and Dawson, V.L., Genetic animal models of Parkinson’s disease, Neuron, 2010, vol. 66, pp. 646–661.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dean, C. and Dresbach, T., Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function, Trends Neurosci., 2006, vol. 29, pp. 21–29.

    CAS  PubMed  Google Scholar 

  • DeKosky, S.T. and Scheff, S.W., Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity, Ann. Neurol., 1990, vol. 27, pp. 457–464.

    CAS  PubMed  Google Scholar 

  • DeKosky, S.T., Scheff, S.W., and Styren, S.D., Structural correlates of cognition in dementia: quantification and assessment of synapse change, Neurodegeneration, 1996, vol. 5, pp. 417–421.

    CAS  PubMed  Google Scholar 

  • DiFiglia, M., Sapp, E., Chase, K.O., et al., Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain, Science, 1997, vol. 277, pp. 1990–1993.

    CAS  PubMed  Google Scholar 

  • Diógenes, M.J., Dias, R.B., Rombo, D.M., et al., Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation, J. Neurosci., 2012, vol. 32, pp. 11750–11762.

    PubMed  Google Scholar 

  • Dodart, J.C., Bales, K.R., Gannon, K.S., et al., Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model, Nat. Neurosci., 2002, vol. 5, pp. 452–457.

    CAS  PubMed  Google Scholar 

  • Dunah, A.W., Jeong, H., Griffin, A., et al., Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease, Science, 2002, vol. 296, pp. 2238–2243.

    CAS  PubMed  Google Scholar 

  • Eisen, A. and Weber, M., The motor cortex and amyotrophic lateral sclerosis, Muscle Nerve, 2001, vol. 24, pp. 564–573.

    CAS  PubMed  Google Scholar 

  • Elias, M.F., Beiser, A., Wolf, P.A., et al., The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort, Arch. Neurol., 2000, vol. 57, pp. 808–813.

    CAS  PubMed  Google Scholar 

  • Enya, M., Morishima-Kawashima, M., Yoshimura, M., et al., Appearance of sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimer in the cortex during aging, Am. J. Pathol., 1999, vol. 154, pp. 271–279.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer, L.R., Culver, D.G., Tennant, P., et al., Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man, Exp. Neurol., 2004, vol. 185, pp. 232–240.

    PubMed  Google Scholar 

  • Fortin, D.L., Nemani, V.M., Voglmaier, S.M., et al., Neural activity controls the synaptic accumulation of α-synuclein, J. Neurosci., 2005, vol. 25, pp. 10913–10921.

    CAS  PubMed  Google Scholar 

  • Frey, D., Schneider, C., Xu, L., et al., Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motor neuron diseases, J. Neurosci., 2000, vol. 20, pp. 2534–2542.

    CAS  PubMed  Google Scholar 

  • Gillingwater, T.H. and Ribchester, R.R., Compartmental neurodegeneration and synaptic plasticity in the Wld(s) mutant mouse, J. Physiol., 2001, vol. 534, pp. 627–639.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilman, C.P. and Mattson, M.P., Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? NeuroMol. Med., 2002, vol. 2, pp. 197–214.

    CAS  Google Scholar 

  • Gong, Y., Chang, L., Viola, K.L., et al., Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLS) suggests a molecular basis for reversible memory loss, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 10417–10422.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grillo, F.W., Song, S., Teles-Grilo, Ruivo L.M., et al., Increased axonal bouton dynamics in the aging mouse cortex, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 1514–1523.

    Google Scholar 

  • Guenther, K., Deacon, R.M., Perry, V.H., and Rawlins, J.N., Early behavioral changes in scrapie-affected mice and the influence of dapsone, Eur. J. Neurosci., 2001, vol. 14, pp. 401–409.

    CAS  PubMed  Google Scholar 

  • Guidetti, P., Charles, V., Chen, E.Y., et al., Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production, Exp. Neurol., 2001, vol. 169, pp. 340–350.

    CAS  PubMed  Google Scholar 

  • Gusev, N.B., Neurodegenerative diseases and normal protein globulation, Soros. Obraz. Zh., 2004, vol. 8, no. 2, pp. 1–23.

    Google Scholar 

  • Hatanpaa, K., Isaacs, K.R., Shirao, T., et al., Loss of proteins regulating synaptic plasticity in normal aging of the human brain and in Alzheimer disease, J. Neuropathol. Exp. Neurol., 1999, vol. 58, pp. 637–643.

    CAS  PubMed  Google Scholar 

  • Hedrich, K., Djarmati, A., Schafer, N., et al., DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease, Neurology, 2004, vol. 62, pp. 389–394.

    CAS  PubMed  Google Scholar 

  • Helton, T.D., Otsuka, T., Lee, M.C., et al., Pruning and loss of excitatory synapses by the Parkin ubiquitin ligase, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 19492–19497.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilton, D.A., Ghani, A.C., Conyers, L., et al., Accumulation of prion protein in tonsil and appendix: review of tissue samples, Br. Med. J., 2002, vol. 325, pp. 633–634.

    Google Scholar 

  • Hutsler, J.J. and Zhang, H., Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders, Brain Res., 2010, vol. 1309, pp. 83–94.

    CAS  PubMed  Google Scholar 

  • Huynh, D.P., Zhang, D.P., Scoles, D.R., et al., The autosomal recessive juvenile Parkinson disease gene product, Parkin, interacts with and ubiquitinates synaptotagmin XI, Hum. Mol. Genet., 2003, vol. 12, pp. 2587–2597.

    CAS  PubMed  Google Scholar 

  • Ikemoto, A., Nakamura, S., Akiguchi, I., and Hirano, A., Differential expression between synaptic vesicle proteins and presynaptic plasma membrane proteins in the anterior horn of amyotrophic lateral sclerosis, Acta Nseuropathol., 2002, vol. 103, pp. 179–187.

    CAS  Google Scholar 

  • Illarioshkin, S.N., Konformatsionnye bolezni mozga (Conformational Brain Diseases), Moscow: Yanus-K, 2003.

    Google Scholar 

  • Ishikura, N., Clever, J.L., Bouzamondo-Bernstein, E., et al., Notch-1 activation and dendritic atrophy in prion disease, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 886–891.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffrey, M., Halliday, W.G., Bell, J., et al., Synapse loss associated with abnormal prp precedes neuronal degeneration in the scrapie-infected murine hippocampus, Neuropathol. Appl. Neurobiol., 2000, vol. 26, pp. 41–54.

    CAS  PubMed  Google Scholar 

  • Johnston, A.R., Black, C., Fraser, J., and MacLeod, N., Scrapie infection alters the membrane and synaptic properties of mouse hippocampal CA1 pyramidal neurons, J. Physiol., 1997, vol. 500, pp. 1–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karlsborg, M., Rosenbaum, S., Wiegell, M., et al., Corticospinal tract degeneration and possible pathogenesis in ALS evaluated by MR diffusion tensor imaging, Amyotrophic Lateral Scler. Frontotemporal Degener., 2004, vol. 5, pp. 136–140.

    Google Scholar 

  • Kawas, C.H., Corrada, M.M., Brookmeyer, R., et al., Visual memory predicts Alzheimer’s disease more than a decade before diagnosis, Neurology, 2003, vol. 60, pp. 1089–1093.

    CAS  PubMed  Google Scholar 

  • Kitada, T., Pisani, A., Porter, D.R., et al., Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 11441–11446.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein, C., Grunewald, A., and Hedrich, K., Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes, Neurology, 2006, vol. 66, pp. 1129–1130.

    Google Scholar 

  • Klyubin, I., Walsh, D.M., Lemere, C.A., et al., Amyloid beta protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo, Nat. Med., 2005, vol. 11, pp. 556–561.

    CAS  PubMed  Google Scholar 

  • Kochlamazashvili, G., Henneberger, C., Bukalo, O., et al., The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels, Neuron, 2010, vol. 67, pp. 116–128.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kotilinek, L.A., Bacskai, B., Westerman, M., et al., Reversible memory loss in a mouse-transgenic model of Alzheimer’s disease, J. Neurosci., 2002, vol. 22, pp. 6331–6335.

    CAS  PubMed  Google Scholar 

  • Kretzschmar, H.A., Prusiner, S.B., Stowring, L.E., and De Armond, S.J., Scrapie prion proteins are synthesized in neurons, Am. J. Pathol., 1986, vol. 122, pp. 1–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., et al., Ala30pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease, Nat. Genet., 1998, vol. 18, pp. 106–108.

    CAS  PubMed  Google Scholar 

  • Kuhn, A., Goldstein, D.R., Hodges, A., et al., Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage, Hum. Mol. Genet., 2007, vol. 16, pp. 1845–1861.

    CAS  PubMed  Google Scholar 

  • Kullmann, D.M. and Lamsa, K.P., Long-term synaptic plasticity in hippocampal interneurons, Nat. Rev. Neurosci., 2007, vol. 8, pp. 687–699.

    CAS  PubMed  Google Scholar 

  • Lambert, M.P., Barlow, A.K., Chromy, B.A., et al., Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 6448–6453.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landis, D.M., Williams, R.S., and Masters, C.L., Golgi and electron microscopic studies of spongiform encephalopathy, Neurology, 1981, vol. 31, pp. 538–549.

    CAS  PubMed  Google Scholar 

  • Landles, C. and Bates, G.P., Huntingtin and the molecular pathogenesis of Huntington’s disease, fourth in molecular medicine review series, EMBO Rep., 2004, vol. 5, pp. 958–963.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laumonnier, F., Bonnet-Brilhault, F., and Gomot, M., X-linked mental retardation and autism are associated with a mutation in the nlgn4 gene, a member of the neuroligin family, Am. J. Hum. Genet., 2004, vol. 74, pp. 552–557.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence, A.D., Hodges, J.R., Rosser, A., et al., Evidence for specific cognitive deficits in preclinical Huntington’s disease, Brain, 1998, vol. 121, pp. 1329–1341.

    PubMed  Google Scholar 

  • Lee, S., Liu, H.P., Lin, W.Y., et al., LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the drosophila neuromuscular junction, J. Neurosci., 2010, vol. 30, pp. 16959–16969.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Legname, G., Baskakov, I.V., Nguyen, H.O., et al., Synthetic mammalian prions, Science, 2004, vol. 305, pp. 673–676.

    CAS  PubMed  Google Scholar 

  • Li, H., Li, S.H., Yu, Z.X., et al., Huntingtin aggregate associated axonal degeneration is an early pathological event in Huntington’s disease mice, J. Neurosci., 2001, vol. 21, pp. 8473–8481.

    CAS  PubMed  Google Scholar 

  • Li, H., Wyman, T., and Yu, Z.X., Abnormal association of mutant huntingtin with synaptic vesicles inhibits glutamate release, Hum. Mol. Genet., 2003, vol. 12, pp. 2021–2030.

    CAS  PubMed  Google Scholar 

  • Li, J.Y., Plomann, M., and Brundin, P., Huntington’s disease: a synaptopathy? Trends Mol. Med., 2003, vol. 9, pp. 414–420.

    CAS  PubMed  Google Scholar 

  • Liu, L., Wong, T.P., Pozza, M.F., et al., Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity, Science, 2004, vol. 304, pp. 1021–1024.

    CAS  PubMed  Google Scholar 

  • Liu, J.-X., Brannstrom, T., Andersen, P.M., and Pedrosa-Domellof, F., Distinct changes in synaptic protein composition at neuromuscular junctions of extraocular muscles versus limb muscles of ALS donors, PLoS One, 2013, vol. 8.

  • Lotharius, J., Barg, S., Wiekop, P., et al., Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line, J. Biol. Chem., 2002, vol. 277, pp. 38884–38894.

    CAS  PubMed  Google Scholar 

  • Mallucci, G., Dickinson, A., Linehan, J., et al., Depleting neuronal prp in prion infection prevents disease and reverses spongiosis, Science, 2003, vol. 302, pp. 871–874.

    CAS  PubMed  Google Scholar 

  • Mallucci, G.R., White, M.D., Farmer, M., et al., Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice, Neuron, 2007, vol. 53, pp. 325–335.

    CAS  PubMed  Google Scholar 

  • Mallucci, G.R., Prion neurodegeneration: starts and stops at the synapse, Prion, 2009, vol. 3, pp. 195–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall, C.R., Noor, A., Vincent, J.B., et al., Structural variation of chromosomes in autism spectrum disorder, Am. J. Hum. Genet., 2008, vol. 82, pp. 477–488.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maselli, R.A., Wollman, R.L., Leung, C., et al., Neuromuscular transmission in amyotrophic lateral sclerosis, Muscle Nerve, 1993, vol. 16, pp. 1193–1203.

    CAS  PubMed  Google Scholar 

  • Masliah, E. and Terry, R., The role of synaptic proteins in the pathogenesis of disorders of the central nervous system, Brain Pathol., 1993, vol. 3, pp. 77–85.

    CAS  PubMed  Google Scholar 

  • Masliah, E., Mallory, M., Alford, M., et al., Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease, Neurology, 2001, vol. 56, pp. 127–129.

    CAS  PubMed  Google Scholar 

  • Matta, S., van Kolen, K., da Cunha, R., et al., LRRK2 controls an endoA phosphorylation cycle in synaptic endocytosis, Neuron, 2012, vol. 75, pp. 1008–1021.

    CAS  PubMed  Google Scholar 

  • Mattson, M.P., Keller, J.N., and Begley, J.G., Evidence for synaptic apoptosis, Exp. Neurol., 1998, vol. 153, p. 35.

    CAS  PubMed  Google Scholar 

  • Mattson, M.P., Apoptotic and anti-apoptotic synaptic signaling mechanisms, Brain Pathol., 2000, vol. 10, pp. 300–312.

    CAS  PubMed  Google Scholar 

  • Milnerwood, A.J. and Raymond, L.A., Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease, Trends Neurosci., 2010, vol. 33, pp. 513–523.

    CAS  PubMed  Google Scholar 

  • Missler, M., Zhang, W., Rohlmann, A., et al., Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis, Nature, 2003, vol. 423, pp. 939–948.

    CAS  PubMed  Google Scholar 

  • Mizuno, H., Shibayama, H., Tanaka, F., et al., An autopsy case with clinically and molecular genetically diagnosed Huntington’s disease with only minimal nonspecific neuropathological findings, Clin. Neuropathol., 2000, vol. 19, pp. 94–103.

    CAS  PubMed  Google Scholar 

  • Moessner, R., Marshall, C.R., Sutcliffe, J.S., et al., Contribution of SHANK3 mutations to autism spectrum disorder, Am. J. Hum. Genet., 2007, vol. 81, pp. 1289–1297.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moser, M., Colello, R.J., Pott, U., and Oesch, B., Developmental expression of the prion protein gene in glial cells, Neuron, 1995, vol. 14, pp. 509–517.

    CAS  PubMed  Google Scholar 

  • Mucke, L., Masliah, E., Yu, G.Q., et al., High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation, J. Neurosci. 2000, vol. 20, pp. 4050–4058.

    CAS  PubMed  Google Scholar 

  • Murthy, V.N. and De Camilli, P., Cell biology of the presynaptic terminal, Annu. Rev. Neurosci., 2003, vol. 26, pp. 701–728.

    CAS  PubMed  Google Scholar 

  • Nucifora, F.C., Jr., Ellerby, L.M., Wellington, C.L., et al., Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity, J. Biol. Chem., 2003, vol. 278, pp. 13047–13055.

    CAS  PubMed  Google Scholar 

  • Nuytemans, K., Theuns, J., Cruts, M., and van Broeckhoven, C., Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update, Hum. Mutat., 2010, vol. 31, pp. 763–780.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Hare, E., Weldon, D.T., Mantyh, P.W., et al., Delayed behavioral effects following intrahippocampal injection of aggregated a beta (1–42), Brain Res., 1999, vol. 815, pp. 1–10.

    PubMed  Google Scholar 

  • Paisan-Ruíz, C., Jain, S., Evans, E.W., et al., Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease, Neuron, 2004, vol. 44, pp. 595–600.

    PubMed  Google Scholar 

  • Palop, J.J. and Mucke, L., Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks, Nat. Neurosci., 2010, vol. 13, pp. 812–818.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasinelli, P. and Brown, R.H., Molecular biology of amyotrophic lateral sclerosis: insights from genetics, Nat. Rev. Neurosci., 2006, vol. 7, pp. 710–723.

    CAS  PubMed  Google Scholar 

  • Paulsen, J.S., Langbehn, D.R., Stout, J.C., et al., Detection of Huntington’s disease decades before diagnosis: the predict-HD study, J. Neurol. Neurosurg. Psychiatry, 2008, vol. 79, pp. 874–880.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peca, J., Feliciano, C., Ting, J.T., et al., SHANK3 mutant mice display autistic-like behaviors and striatal dysfunction, Nature, 2011, vol. 472, pp. 437–442.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piccoli, G., Condliffe, S.B., Bauer, M., et al., LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool, J. Neurosci., 2011, vol. 31, pp. 2225–2237.

    CAS  PubMed  Google Scholar 

  • Picconi, B., Piccoli, G., and Calabresi, P., Synaptic dysfunction in Parkinson’s disease, Adv. Exp. Med. Biol., 2012, vol. 970, pp. 553–572.

    CAS  PubMed  Google Scholar 

  • Plowey, E.D. and Chu, C.T., Synaptic dysfunction in genetic models of Parkinson’s disease: a role for autophagy? Neurobiol. Dis, 2011, vol. 43, pp. 60–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polymeropoulos, M.H., Lavedan, C., Leroy, E., et al., Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease, Science, 1997, vol. 276, pp. 2045–2047.

    CAS  PubMed  Google Scholar 

  • Popugaeva, E., Supnet, C., and Bezprozvanny, I., Presenilins, deranged calcium homeostasis, synaptic loss and dysfunction in Alzheimer’s disease, Messenger, 2012, vol. 1, pp. 53–62.

    Google Scholar 

  • Prusiner, S.B., McKinley, M.P., and Bowman, K.A., Scrapie prions aggregate to form amyloid-like birefringent rods, Cell, 1983, vol. 35, pp. 349–358.

    CAS  PubMed  Google Scholar 

  • Prusiner, S.B., Prions, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 13363–13383.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puzzo, D., Privitera, L., Leznik, E., et al., Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus, J. Neurosci., 2008, vol. 28, pp. 14537–14545.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond, L.A., Andre, V.M., Cepeda, C., et al., Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function, Neuroscience, 2011, vol. 198, pp. 252–273.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Recchia, A., Debetto, P., Negro, A., et al., Alpha-synuclein and Parkinson’s disease, FASEB J., 2004, vol. 18, pp. 617–626.

    CAS  PubMed  Google Scholar 

  • Rosenberg, R.E., Law, J.K., Yenokyan, G., et al., Characteristics and concordance of autism spectrum disorders among 277 twin pairs, Arch. Pediatr. Adolesc. Med., 2009, vol. 163, pp. 907–914.

    PubMed  Google Scholar 

  • Roussignol, G., Ango, F., Romorini, S., et al., Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons, J. Neurosci., 2005, vol. 25, pp. 3560–3570.

    CAS  PubMed  Google Scholar 

  • Rowland, L.P. and Shneider, N.A., Medical progress: amyotrophic lateral sclerosis, N. Engl. J. Med., 2001, vol. 344, pp. 1688–1700.

    CAS  PubMed  Google Scholar 

  • Sala, C., Piech, V., Wilson, N.R., et al., Regulation of dendritic spine morphology and synaptic function by shank and homer, Neuron, 2001, vol. 31, pp. 115–130.

    CAS  PubMed  Google Scholar 

  • Saura, C.A., Choi, S.-Y., Beglopoulos, V., et al., Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration, Neuron, 2004, vol. 42, pp. 23–36.

    CAS  PubMed  Google Scholar 

  • Savitt, J.M., Dawson, V.L., and Dawson, T.M., Diagnosis and treatment of Parkinson disease: molecules to medicine, J. Clin. Invest., 2006, vol. 116, pp. 1744–1754.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheff, S.W., Price, D.A., Schmitt, F.A., et al., Synaptic alterations in CA1 in mild alzheimer disease and mild cognitive impairment, Neurology, 2007, vol. 68, pp. 1501–1508.

    CAS  PubMed  Google Scholar 

  • Scott, D.A., Tabarean, I., Tang, Y., et al., A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration, J. Neurosci., 2010, vol. 30, pp. 8083–8095.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selkoe, D., Alzheimer’s disease is a synaptic failure, Science, 2002, vol. 298, pp. 789–791.

    CAS  PubMed  Google Scholar 

  • Shankar, G.M., Bloodgood, B.L., Townsend, M., et al., Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway, J. Neurosci., 2007, vol. 27, pp. 2866–2875.

    CAS  PubMed  Google Scholar 

  • Shin, N., Jeong, H., Kwon, J., et al., LRRK2 regulates synaptic vesicle endocytosis, Exp. Cell Res., 2008, vol. 314, pp. 2055–2065.

    CAS  PubMed  Google Scholar 

  • Sidhu, A., Wersinger, C., and Vernier, P., Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J., 2004, vol. 18, pp. 637–647.

    CAS  PubMed  Google Scholar 

  • Singleton, A.B., Farrer, M., Johnson, J., et al., Alpha-synuclein locus triplication causes Parkinson’s disease, Science, 2003, vol. 302, p. 841.

    CAS  PubMed  Google Scholar 

  • Spillantini, M.G., Schmidt, M.L., Lee, V.M., et al., Alphasynuclein in Lewy bodies, Nature, 1997, vol. 388, pp. 839–840.

    CAS  PubMed  Google Scholar 

  • Spooren, W., Lindemann, L., Ghosh, A., et al., Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders, Trends. Pharmacol. Sci., 2012, vol. 33, pp. 669–684.

    CAS  PubMed  Google Scholar 

  • Stahl, N., Baldwin, M.A., Teplow, D.B., et al., Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing, Biochemistry, 1993, vol. 32, pp. 1991–2002.

    CAS  PubMed  Google Scholar 

  • Tabuchi, K., Blundell, J., Etherton, M.R., et al., A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice, Science, 2007, vol. 318, pp. 71–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi, M., Hata, Y., Hirao, K., et al., A family of psd95/sap90-associated proteins localized at postsynaptic density, J. Biol. Chem., 1997, vol. 272, pp. 11943–11951.

    CAS  PubMed  Google Scholar 

  • Taylor, J.P., Mata, I.F., and Farrer, M.J., LRRK2: a common pathway for Parkinsonism, pathogenesis and prevention? Trends Mol. Med., 2006, vol. 12, pp. 76–82.

    CAS  PubMed  Google Scholar 

  • Terry, R.D. and Katzman, R., Life span and synapses: will there be a primary senile dementia? Neurobiol. Aging, 2001, vol. 22, pp. 347–348.

    CAS  PubMed  Google Scholar 

  • Thomas, B. and Beal, M.F., Parkinson’s disease, Hum. Mol. Genet., 2007, vol. 16, pp. R183–R194.

    CAS  PubMed  Google Scholar 

  • Tong, Y., Pisani, A., Martella, G., et al., R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 14622–14627.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Townsend, M., Shankar, G.M., Mehta, T., et al., Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers, J. Physiol., 2006, vol. 572, pp. 477–492.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trojanowski, J.Q. and Lee, V.M.Y., Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of parkinson disease and Lewy body dementia, Arch. Neurol., 1998, vol. 55, pp. 151–152.

    CAS  PubMed  Google Scholar 

  • Trottier, Y., Devys, D., Imbert, G., et al., Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form, Nat. Genet., 1995, vol. 10, pp. 104–110.

    CAS  PubMed  Google Scholar 

  • Tsai, J., Grutzendler, J., Duff, K., and Gan, W.B., Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches, Nat. Neurosci., 2004, vol. 7, pp. 1181–1183.

    CAS  PubMed  Google Scholar 

  • van Raamsdonk, J.M., Pearson, J., Slow, E.J., et al., Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease, J. Neurosci., 2005, vol. 25, pp. 4169–4180.

    PubMed  Google Scholar 

  • Varoqueaux, F., Aramuni, G., Rawson, R.L., et al., Neuroligins determine synapse maturation and function, Neuron, 2006, vol. 51, pp. 741–754.

    CAS  PubMed  Google Scholar 

  • Venkitaramani, D.V., Chin, J., Netzer, W.J., et al., Beta-amyloid modulation of synaptic transmission and plasticity, J. Neurosci., 2007, vol. 27, pp. 11832–11837.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vonsattel, J.P., Myers, R.H., Stevens, T.J., et al., Neuropathological classification of Huntington’s disease, J. Neuropathol. Exp. Neurol., 1985, vol. 44, pp. 559–577.

    CAS  PubMed  Google Scholar 

  • Walsh, D.M., Hartley, D.M., Kusumoto, Y., et al., Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates, J. Biol. Chem., 1999, vol. 274, pp. 25945–25952.

    CAS  PubMed  Google Scholar 

  • Walsh, D.M., Klyubin, I., Fadeeva, J.V., et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 2002, vol. 416, pp. 535–539.

    CAS  PubMed  Google Scholar 

  • Wan, O.W. and Chung, K.K., K the role of alpha-synuclein oligomerization and aggregation in cellular and animal models of Parkinson’s disease, PLoS One, 2012, vol. 7.

  • Wang, Y., Chandran, J.S., Cai, H., and Mattson, M.P., DJ-1 is essential for long-term depression at hippocampal CA1 synapses, Neuromol. Med., 2008, vol. 10, pp. 40–45.

    CAS  Google Scholar 

  • Wishart, T.M., Parson, S.H., and Gillingwater, T.H., Synaptic vulnerability in neurodegenerative disease, J. Neuropathol. Exp. Neurol., 2006, vol. 65, pp. 733–739.

    CAS  PubMed  Google Scholar 

  • Wood, J.D., Macmillan J.C., Harper, P.S., et al., partial characterization of murine huntingtin and apparent variations in the subcellular localization of huntingtin in human, mouse and rat brain, Hum. Mol. Genet., 1996, vol. 5, pp. 481–487.

    CAS  PubMed  Google Scholar 

  • Yavich, L., Tanila, H., Vepsalainen, S., and Jäkälä, P., Role of alpha_synuclein in presynaptic dopamine recruitment, J. Neurosci., 2004, vol. 24, pp. 11165–11170.

    CAS  PubMed  Google Scholar 

  • Zarranz, J.J., Alegre, J., Gomez-Esteban, J.C., et al., The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia, Ann. Neurol., 2004, vol. 55, pp. 164–173.

    CAS  PubMed  Google Scholar 

  • Zeron, M.M., Hansson, O., and Chen, N., Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease, Neuron, 2002, vol. 33, pp. 849–860.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Gao, J., Chung, K.K., et al., Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 13354–13359.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimprich, A., Muller-Myhsok, B., Farrer, M., et al., The PARK8 locus in autosomal dominant parkinsonism: confirmation of linkage and further delineation of the disease-containing interval, Am. J. Hum. Genet., 2004, vol. 74, pp. 11–19.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sarantseva.

Additional information

Original Russian Text © A.L. Schwarzman, S.V. Sarantseva, 2014, published in Uspekhi Sovremennoi Biologii, 2014, Vol. 134, No. 4, pp. 395–408.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarzman, A.L., Sarantseva, S.V. Pathology of synapses in neurological diseases. Biol Bull Rev 4, 515–526 (2014). https://doi.org/10.1134/S2079086415020085

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086415020085

Keywords

Navigation