Skip to main content
Log in

The role of parasitoids and virus infections in the population dynamics of mass species of insects-phyllophages

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The role of parasites (parasitoids and infections) in the population dynamics of the gypsy moth (Lymantria dispar L.) and the nun moth (Lymantria monacha L.), which are prone to large-scale and panzonal periodic outbreaks, is discussed. The results of long-term research have shown that parasites are not the key regulators of the abundance of forest phytophagous insects with high biotic potential, even though they reduce its values, mainly because of the elimination of specimens with low viability. Outbreaks of these parasites are explained by the influence of stress abiotic factors (for example, of droughts) on cenopopulations of woody plants rather than by a delay in parasitic activity or insect escape. Plant reactions to stress under certain biotopic conditions cause changes in the biochemical composition of leaves and needles that are favorable for phyllophages with high biotic potential and rapid adaptation to new environmental and climatic conditions. For this reason, in the system of tree-phytophage interactions, the trophic factor is of primary importance. This role in the phytophage-parasite system is indirectly associated with a sharp decline in the immunity of insects and their increased sensitivity to parasites. It should be noted that this assumption is significant only for forest phytophagous insects having high biotic potential, which are subjected to large-scale and panzonal periodic outbreaks of their abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, K.C. and Dwyer, G., Food limitation and insect outbreaks: complex dynamics in plant-herbivore models, J. Anim. Ecol., 2007, vol. 76, no. 5, pp. 1004–1014.

    PubMed  Google Scholar 

  • Agrawal, A.A., Lau, J.A., and Hamback, P.A., Community heterogeneity and the evolution of interactions between plants and insect herbivores, Quart. Rev. Biol., 2006, vol. 81, no. 4, pp. 349–376.

    PubMed  Google Scholar 

  • Ahmad, S. and Pardini, R.S., Mechanisms for regulating oxygen toxicity in phytophagous insects, Free Radic. Biol. Med., 1990, vol. 8(4), pp. 401–413.

    CAS  PubMed  Google Scholar 

  • Bakhvalov, S.A., Influence of relationships in the system plant-insect-parasite on development and population dynamics of insects, Extended Abstracts of Doctoral (Biol.) Dissertation, Novosibirsk, 2008.

    Google Scholar 

  • Bakhvalov, S.A., Bakhvalova, V.N., and Martem’yanov, V.V., Role of trophic factor in insect population dynamic: problem analysis, Usp. Sovrem. Biol., 2006, vol. 126, no. 1, pp. 49–60.

    Google Scholar 

  • Bakhvalov, S.A., Bashev, A.N., and Knor, I.B., Dynamics of populations of black arches Lymantria monacha L. (Lymantriidae: Lepidoptera) and its parasite baculovirus in Western Siberia, Lesovedenie, 1998, no. 4, pp. 26–33.

    Google Scholar 

  • Bakhvalov, S.A., Il’inykh, A.V., Zhimerikhin, V.N., and Martem’yanov, V.V., Dynamics of black arches Lymantria monacha L. and gypsy moth L. dispar L. (Lymantriidae, Lepidoptera): role of food resources and virus infection, Evraz. Entomol. Zh., 2002, vol. 1, no. 1, pp. 101–108.

    Google Scholar 

  • Bakhvalov, S.A., Koltunov, E.V., and Martem’yanov, V.V. Faktory i ekologicheskie mekhanizmy populyatsionnoi dinamiki lesnykh nasekomykh-fillofagov (Factors and Environmental Mechanisms of Population Dynamics of Forest Insects-Phyllophages), Novosibirsk: Nauka, 2010.

    Google Scholar 

  • Battisti, A., Host-plant relationships and population dynamics of the pine processionary caterpillar Thaumetopoea pityocampa (Denis & Schiffermuller), Z. Angew. Entomol., 1988, vol. 105, no. 4, pp. 393–402.

    Google Scholar 

  • Beninger, C.W., Abou-Zaid, M.M., Kinstner, A.L.E., et al., A flavanone and two phenolic acids from Chrysanthemum morifolium with phytotoxic and insect growth regulating activity, J. Chem. Ecol., 2004, vol. 30, no. 3, pp. 589–606.

    CAS  PubMed  Google Scholar 

  • Bernays, E.A. and Chapman, R.F., Plant secondary compounds and grasshoppers: beyond plant defenses, J. Chem. Ecol., 2000, vol. 26, pp. 1773–1794.

    CAS  Google Scholar 

  • Bonsall, M.B., van der Meijden, E., and Crawley, M.J., Contrasting dynamics in the same plant-herbivore interaction, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 25, pp. 1493–1498.

    Google Scholar 

  • Bruinsma, M. and Dicke, M., Herbivore-induced indirect defense: from induction mechanisms to community ecology, in Induced Plant Resistance to Herbivory, Springer, 2008, pp. 31–60.

    Google Scholar 

  • Bryant, J.P., Heitkonig, I. Kuropat, P., and Owen-Smith, N., Effects of severe defoliation on the long-term resistance to insect attack and on leaf chemistry in six woody species of the southern African savanna, Am. Nat., 1991, vol. 137, pp. 50–63.

    Google Scholar 

  • Buntgen, U., Frank, D., Liebhold, A., et al., Three centuries of insect outbreaks across, Eur. Alps New Phytol., 2009, vol. 182, no. 4, pp. 929–941.

    Google Scholar 

  • Byington, T.S., Gottschalk, K.W., and Mcgraw, J.B., Within—population variation in response of red oak seedlings to herbivory by gypsy moth larvae, Am. Midl. Nat., 1994, vol. 132, no. 2, pp. 328–339.

    Google Scholar 

  • Cai, Q.N, Ma, X.M, Zhao, X., et al., Effects of host plant resistance on insect pests and its parasitoid: a case study of wheat-aphid-parasitoid system, Biol. Control, 2009, vol. 49, no. 2, pp. 134–138.

    Google Scholar 

  • Chernyshev, V.B., Ekologiya nasekomykh (Ecology of the Insects), Moscow: Mosk. Gos. Univ., 1996.

    Google Scholar 

  • Classen, A.T., Chapman, S.K., Whitham, T.G., et al., Genetic based plant resistance and susceptibility traits to herbivory influence needle and root litter nutrient dynamics, J. Ecol., 2007, vol. 95, no. 6, pp. 1181–1194.

    CAS  Google Scholar 

  • Cory, J.S. and Hoover, K., Plant-mediated effects in insect-pathogen interactions, Trends Ecol. Evol., 2006, vol. 21, pp. 278–286.

    PubMed  Google Scholar 

  • Crone, E.E. and Jones, C.G., The dynamics of carbon-nutrient balance: effects of cottonwood to short- and long-term shade on beetle feeding preferences, J. Chem. Ecol., 1999, vol. 25, no. 3, pp. 635–656.

    CAS  Google Scholar 

  • Cuevas-Reyes, P., Quesada, M., Hanson, P., and Oyama, K., Interactions among three trophic levels and diversity of parasitoids: a case of top-down processes in Mexican tropical dry forest, Environ. Entomol., 2007, vol. 36, no. 4, pp. 792–800.

    PubMed  Google Scholar 

  • Dalin, P., Habitat difference in abundance of willow leaf beetle Phratora vulgatissima (Coleoptera: Chrysomelidae): plant quality or natural enemies? Bull. Entomol. Res., 2006, vol. 96, no. 6, pp. 629–635.

    CAS  PubMed  Google Scholar 

  • Damico, V., Elkinton, J.S. Dwyer, G., Willis, R.B., and Montgomery, M.E., Foliage damage does not affect within-season transmission of an insect virus, Ecology, 1998, vol. 79, no. 3, pp. 1104–1110.

    Google Scholar 

  • Denno, R.F., Lewis, D., and Gratton, C., Spatial variation in the relative strength of top-down and bottom-up forces: causes and consequences for phytophagous insect populations, Ann. Zool. Fenn., 2005, vol. 42, no. 4, pp. 295–311.

    Google Scholar 

  • Donaldson, J.R., Kruger, E.L., and Lindroth, R.L., Competition- and resource-mediated tradeoffs between growth and defensive chemistry in trembling aspen (Populus tremuloides), New Phytol., 2006, vol. 169, no. 3, pp. 561–570.

    CAS  PubMed  Google Scholar 

  • Dwyer, G., Firestone, J., and Stevens, T.E., Should models of disease dynamics in herbivorous insects include the effects of variability in host plant foliage quality? Am. Nat., 2005, vol. 165, pp. 16–31.

    PubMed  Google Scholar 

  • Dynamics of Forest Insect Populations, Berryman, A.A., Ed., New York: Plenum Press, 1988.

    Google Scholar 

  • Felton, G.W. and Gtehouse, J.A., Antinutritive plant defense mechanisms, in Biology of the Insect Midgut, Lehane, M.J. and Billingsley, P.F., Eds., London: Chapman and Hall, 1996, pp. 373–416.

    Google Scholar 

  • Fleder, W., Waldbauliche Aspecte im Zusammenhang mit Kalamitaten durch “Freifressende Schmetterlingsraupen im Forst,” in Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin: Dahlem, 1994, vol. 293, pp. 82–93.

    Google Scholar 

  • Gandhi, K.J.K. and Herms, D.A., Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America, Biol. Invasions, 2010, vol. 12, no. 2, pp. 389–405.

    Google Scholar 

  • Gaylord, E.S., Preszler, R.W., and Boecklen, W.J., Interactions between host plants, endophytic fungi and a phytophagous insect in an oak (Quercus griseax, Q. gambelii) hybrid zone, Oecologia, 1996, vol. 105, no. 3, pp. 336–342.

    Google Scholar 

  • Georgievska, L., Joosten, N., Hoover, K., et al., Effects of single and mixed infections with wild type and genetically modified Helicoverpa armigera nucleopolyhedrovirus on movement behavior of cotton bollworm larvae, Auth. Entomol. Exp. Appl., 2010, vol. 135, pp. 56–67.

    Google Scholar 

  • Giertych, M.J., Bakowski, M., Karolewski, P., et al., Influence of mineral fertilization on food quality of oak leaves and utilization efficiency of food components by the gypsy moth, Entomol. Exp. Appl., 2005, vol. 117, no. 1, pp. 59–69.

    CAS  Google Scholar 

  • Giertych, M.J., Karolewski, P., Grzebyta, J., and Oleksyn, J., Feeding behavior and performance of Neodiprion sertifer larvae reared on Pinus sylvestris needles, For. Ecol. Manage., 2007, vol. 242, nos. 2–3, pp. 700–707.

    Google Scholar 

  • Glupov, V.V. and Bakhvalov, S.A., Resistance mechanisms of the insects at pathogenesis, Usp. Sovrem. Biol., 1998, vol. 118, no. 4, pp. 466–482.

    Google Scholar 

  • Gruppe, A., Die Bedeutung von Nadelinhaltsstoffen fur den Entwicklungserfolg von Nonen-Larven (Lymantria monacha L.), Mitt. Dtsch. Ges. Allg. Angew. Entomol., 1993, vol. 8, nos. 4–6, pp. 497–498.

    Google Scholar 

  • Haack, R.A. and Mattson, W.J., They nibbled while the forests burned, Nat. Hist., 1989, vol. 98, no. 1, pp. 56–57.

    Google Scholar 

  • Harrison, S., Persistent, localized outbreaks in the western tussock moth Orgyia vetusta: the roles of resource quality, predation and poor dispersal, Ecol. Entomol., 1997, vol. 22, no. 2, pp. 158–166.

    Google Scholar 

  • Harvey, J.A., van Nouhuys, S., and Biere, A., Effects of quantitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids, J. Chem. Ecol., 2005, vol. 31, no. 2, pp. 287–302.

    CAS  PubMed  Google Scholar 

  • Haukioja, E., Induction of defense in trees, Ann. Rev. Entomol. (Palo Alto, Calif.), 1991, pp. 25–42.

    Google Scholar 

  • Haukioja, E., Nutritive quality as a defense against herbivores, in Proc. 18th Int. Congr. Entomol., Abstracts and Author Index, Vancouver, 1988, p. 421.

    Google Scholar 

  • Haukioja, E., Plant defenses and population fluctuations of forest defoliators: mechanism-based scenarios, Ann. Zool. Fennici., 2005, vol. 42, pp. 313–325.

    Google Scholar 

  • Haukioja, E., Putting the insect into the birch-insect interaction, Oecologia, 2003, vol. 136, pp. 161–168.

    PubMed  Google Scholar 

  • Hausmann, C., Wackers, F.L., and Dorn, S., Sugar convertibility in the parasitoid Cotesia glomerata (Hymenoptera: Braconidae), Arch. Insect Biochem. Physiol., 2005, vol. 60, no. 4, pp. 223–229.

    CAS  PubMed  Google Scholar 

  • Helms, S.E. and Hunter, M.D., Variation in plant quality and the population dynamics of herbivores: there is nothing average about aphids, Oecologia, 2005, vol. 145, no. 2, pp. 197–204.

    PubMed  Google Scholar 

  • Hemming, J.D.C. and Lindroth, R.L., Intraspecific variation in aspen phytochemistry: effects on performance of gypsy moth and forest tent caterpillars, Oecologia, 1995, vol. 103, no. 1, pp. 79–88.

    Google Scholar 

  • Herniou, E.A. and Jehle, J.A., Baculovirus phylogeny and evolution, Curr. Drug Targets, 2007, vol. 8, no. 10, pp. 1043–1050.

    CAS  PubMed  Google Scholar 

  • Hogstedt, G., Seldal, T., and Breistol, A., Period length in cyclic animal populations, Ecology, 2005, vol. 86, pp. 373–378.

    Google Scholar 

  • Hunter, A.F., Ecology, life history, and phylogeny of outbreak and nonoutbreak species, in Population Dynamics: New Approaches and Synthesis, Cappucino, N. and Price, P.W., Åds., New York: Academic Press, 1995, pp. 41–64.

    Google Scholar 

  • Hunter, M.D., Multiple approaches to estimating the relative importance of top-down and bottom-up forces on insect populations: experiments, life tables and time series analysis, Basic Appl. Ecol., 2001, vol. 2, no. 4, pp. 295–309.

    Google Scholar 

  • Insect Outbreaks, Barbosa, P. and Schultz, J.C., Eds., London: Academic, 1987.

    Google Scholar 

  • Isaev, A.S., Khlebopros, R.G., Nedorezov, L.V., et al., Dinamika chislennosti lesnykh nasekomykh (Population Dynamics of Forest Insects), Novosibirsk: Nauka, 1984.

    Google Scholar 

  • Ivashchenko, L.S., Role of the plants in interaction with the insects, in Zashchishchennost’ rastitel’nosti v usloviyakh reformirovaniya agropromyshlennogo kompleksa (Protection of Vegetation in Conditions of Reforms in Agricultural Complex), St. Petersburg, 1995, pp. 198–199.

    Google Scholar 

  • Johnson, M.T.J., Bottom-up effects of plant genotype on aphids, ants, and predators, Ecology, 2008, vol. 89, no. 1, pp. 145–154.

    PubMed  Google Scholar 

  • Kaitaniemi, P. and Ruohomaki, K., Sources of variability in plant resistance against insects: free caterpillars show strongest effects, Oikos, 2001, vol. 95, no. 3, pp. 461–470.

    Google Scholar 

  • Kaitaniemi, P., Ruohomaki, K., Ossipov, V., et al., Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak, Oecologia, 1998, vol. 116, nos. 1–2, pp. 182–190.

    Google Scholar 

  • Kendall, B.E., Ellner, S.P., McCauley, E., et al., Population cycles in the pine looper moth: dynamical tests of mechanistic hypotheses, Ecol. Monogr., 2005, vol. 75, pp. 259–276.

    Google Scholar 

  • Knape, J. and de Valpine, P., Effects of weather and climate on the dynamics of animal population time series, Proc. R. Soc. B., 2011, vol. 278, no. 1708, pp. 985–992.

    PubMed Central  PubMed  Google Scholar 

  • Koltunov, E.V., Nasekomye-fitofagi lesnykh biogeotsenozov v usloviyakh antropogennogo vozdeistviya (Insects-Phytophages in Forest Biogeocenosises Affected Anthropogenic Factors), Yekaterinburg: Nauka, 1993.

    Google Scholar 

  • Koltunov, E.V., Ekologiya neparnogo shelkopryada v lesakh Evrazii (Ecology of Gypsy Moth in Eurasian Forests), Yekaterinburg: UrO, Ross. Akad. Nauk, 2006.

    Google Scholar 

  • Koltunov, E.V. and Khamidullina, M.I., The reasons of mass reproduction burst of the gypsy moth in Trans-Ural forest-steppe, Agro XXI, 2009, nos. 1–3, pp. 23–25.

    Google Scholar 

  • Koltunov, E.V. and Khamidullina, M.I., Influence of defoliation on concentration of phenol-containing compounds in the leaves of silver birch (Betula pendula Roth.) affected by anthropogenic factors, Sovrem. Probl. Nauki Obraz., 2012, no. 6. http://www.science-education.ru/106-7436

    Google Scholar 

  • Koltunov, E.V., Ponomarev, V.I., and Fedorenko, S.I., Ekologiya neparnogo shelkopryada v usloviyakh antropogennogo vozdeistviya (Ecology of Gypsy Moth Affected by Anthropogenic Factors), Yekaterinburg: Inst. Lesa, 1998.

    Google Scholar 

  • Kondakov, Yu.P., Mass reproduction of Siberian silk moth in the forests of Krasnoyarsk krai, Entomol. Issled. Sibiri, 2002, no. 2, pp. 25–74.

    Google Scholar 

  • Konikov, A.S., On biocoenotic and population levels of insect’s adaptation to habitat conditions, Ekologiya, 1971, no. 1, pp. 80–86.

    Google Scholar 

  • Konikov, A.S., Regulyatory chislennosti lesnykh nasekomykh (Regulating Factors of Forest Insect Population Number), Novosibirsk: Nauka, 1978.

    Google Scholar 

  • Le Mellec, A., Gerold, G., and Michalzik, B., Insect herbivory, organic matter deposition and effects on below-ground organic matter fluxes in a central European oak forest, Plant Soil, 2011, vol. 342, nos. 1–2, pp. 393–403.

    CAS  Google Scholar 

  • Liebhold, A.M. and Tobin, P.C., Population ecology of insect invasions and their management, Annu. Rev. Entomol., 2008, vol. 53, pp. 387–408.

    CAS  PubMed  Google Scholar 

  • Marques, E.S.D., Price, P.W., and Cobb, N.S., Resource abundance and insect herbivore diversity on woody Fabaceous desert plants, Environ. Entomol., 2000, vol. 29, no. 4, pp. 696–703.

    Google Scholar 

  • Martem’yanov, V.V. and Bakhvalov, S.A., Environmental relationships in the system of triotrophic and their influence on development and population dynamics of forest phyllophages, Evroaziat. Entomol. Zh., 2007, vol. 6, no. 2, pp. 205–221.

    Google Scholar 

  • Mattson, W.J., Haack, R.H., Lawrence, R.K., and Slocum, S.S., Considering the nutritional ecology of the spruce budworm in its management, For. Ecol. Manag., 1991, vol. 39, nos. 1–4, pp. 183–210.

    Google Scholar 

  • McMillin, J.D. and Wagner, M.R., Chronic defoliation impacts pine sawfly (Hymenoptera: Diprionidae) performance and host plant quality, Oikos, 1997, vol. 79, no. 2, pp. 357–362.

    Google Scholar 

  • Meade, T., Felton, G.W., and Young, S.Y., Interactions among plants, herbivores, and entomopathogens: implications for pest management, in XIII Int. Plant Protection Conf., The Hague, 1995, p. 435.

    Google Scholar 

  • Morales, M.A. and Beal, A.L.H., Effects of host plant quality and ant tending for treehopper Publilia concava, Ann. Entomol. Soc. Am., 2006, vol. 99, no. 3, pp. 545–552.

    Google Scholar 

  • Moran, P.J., Plant-mediated interactions between insects and a fungal plant pathogen and the role of plant chemical responses to infection, Oecologia, 1998, vol. 115, no. 4, pp. 523–530.

    Google Scholar 

  • Nadzor, uchet i prognoz massovykh razmnozhenii khvoe- i listogryzushchikh nasekomykh v lesakh SSSR (Control, Calculation, and Forecast of Mass Reproduction of the Needle- and Leaf Beetles in USSR Forest), Il’inskii, A.I. and Tropin, I.V., Eds., Moscow: Lesn. Prom-st., 1965.

    Google Scholar 

  • Nakamura, M., Miyamoto, Y., and Ohgushi, T., Gall initiation enhances the availability of food resources for herbivorous insects, Funct. Ecol., 2003, vol. 17, no. 6, pp. 851–857.

    Google Scholar 

  • Navon, A., Hare, J.D., and Federici, B.A., Interactions among Heliothis virescens larvae, cotton condensed tannin and the cryia (c) delta—endotoxin of Bacillus thuringiensis, J. Chem. Ecol., 1993, vol. 19, no. 11, pp. 2485–2499.

    CAS  PubMed  Google Scholar 

  • Osier, T.L. and Lindroth, R.L., Long-term effects of defoliation on quaking aspen in relation to genotype and nutrient availability: plant growth, phytochemistry and insect performance, Oecologia, 2004, vol. 139, no. 1, pp. 55–65.

    PubMed  Google Scholar 

  • Parry, D., Herms, D.A., and Mattson, W.J., Responses of an insect folivore and its parasitoids to multiyear experimental defoliation of aspen, Ecology, 2003, vol. 84, no. 7, pp. 1768–1783.

    Google Scholar 

  • Pasqualone, A.A. and Davis, J.M., The use of conspecific phenotypic states as information during reproductive decisions, Anim. Behav., 2011, vol. 82, no. 2, pp. 281–284.

    Google Scholar 

  • Piubelli, G.C., Hoffmann-Campo, C.B., Moscardi, F., et al., Baculovirus-resistant Anticarsia gemmatalis responds differently to dietary rutin, Entomol. Exp. Appl., 2006, vol. 119, no. 1, pp. 53–60.

    CAS  Google Scholar 

  • Pokozii, I.T., Aleksenitser, M.L., Bereznitskaya, N.N., et al., Some physiological reactions of the Chinese oak silkworm (Antheraea pernyi G.M) feeding with conserve food, Izv. Khar. Entomol. O-va, 1994, vol. 2, no. 1, pp. 108–115.

    Google Scholar 

  • Rafes, P.M., Biogeocenologic theory of population dynamics of herbivore forest insects, in Matematicheskoe modelirovanie v ekologii (Mathematical Modeling in Ecology), Moscow: Nauka, 1978, pp. 34–51.

    Google Scholar 

  • Rafes, P.M., Interaction of leaf-damaging forest insects and the trees, Entomologiya, 1981, vol. 5, pp. 140–202.

    Google Scholar 

  • Rafes, P.M., Mass reproduction of leaf beetles as the disease of forest biogeocenosises, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1989, vol. 94, no. 4, pp. 3–14.

    Google Scholar 

  • Raymond, B., Hartley, S.E., Cory, J.S., and Hails, R.S., The role of food plant and pathogen-induced behavior in the persistence of a nucleopolyhedrovirus, J. Invertebr. Pathol., 2005, vol. 88, no. 1, pp. 49–57.

    PubMed  Google Scholar 

  • Regniere, J. and Nealis, V.G., Ecological mechanisms of population change during outbreaks of the spruce budworm, Ecol. Entomol., 2007, vol. 32, no. 5, pp. 461–477.

    Google Scholar 

  • Reilly, J.R. and Hajek, A.E., Density-dependent resistance of the gypsy moth Lymantria dispar to its nucleopolyhedrovirus, and the consequences for population dynamics, Oecologia, 2008, vol. 154, no. 4, pp. 691–701.

    PubMed  Google Scholar 

  • Rudnev, D.F., Influence of physiological conditions of the plants in mass reproduction of forest insects-parasites, Zool. Zh., 1962, vol. 41, no. 3, pp. 313–329.

    Google Scholar 

  • Schowalter, T.D., Hardrowe, W.W., and Crossley, D.A., Herbivory in forested ecosystems, Annu. Rev. Entomol., 1986, vol. 31, pp. 177–196.

    Google Scholar 

  • Schwerdtfeger, F., Is the density of animal populations regulated by mechanisms or by chance? Int. Congr. Entomol. Proc., 1958, vol. 4, pp. 115–152.

    Google Scholar 

  • Scriber, J.M., Integrating ancient patterns and current dynamics of insect-plant interactions: taxonomic and geographic variation in herbivore insect specialization, Science, 2010, vol. 17, no. 6, pp. 471–507.

    Google Scholar 

  • Shapiro, M., Robertson, J.L., and Webb, R.E., Effect of nemm seed extract upon the gypsy moth (Lepidoptera, Lymantriidae) and its nuclear polyhedrosis virus, J. Econ. Entomol., 1994, vol. 87, no. 2, pp. 356–360.

    Google Scholar 

  • Stadnitskii, G.V., Introduction to the general theory of forest protection, in Ekologiya i zashchita lesa (Ecology and Forest Protection), Leningrad, 1988, pp. 87–91.

    Google Scholar 

  • Tonnang, H.E.Z., Nedorezov, L.V., Owino, J.O., and Ochanda Lohr, B., Host-parasitoid population density prediction using artificial neural networks: diamondback moth and its natural enemies, Agric. For. Entomol., 2010, vol. 12, no. 3, pp. 233–242.

    Google Scholar 

  • Tooker, J.F. and Hanks, L.M., Tritrophic interactions and reproductive fitness of the prairie perennial Silphium laciniatum Gillette (Asteraceae), Environ. Entomol., 2006, vol. 35, no. 2, pp. 537–545.

    Google Scholar 

  • Treutter, D., Biosynthesis of phenolic compounds and its regulation in apple, Plant Growth Regul., 2001, vol. 34, pp. 71–89.

    CAS  Google Scholar 

  • Turchin, P., Wood, S.N., Ellner, S.P., et al., Dynamical effects of plant quality and parasitism on population cycles of larch bud moth, Ecology, 2003, vol. 84, no. 5, pp. 1207–1214.

    Google Scholar 

  • Viktorov, G.A., Problema dinamiki chislennosti nasekomykh na primere vrednoi cherepashki (Problems of Mass Reproduction of the Insects by Example of the Sunn Pest), Moscow: Nauka, 1967.

    Google Scholar 

  • Watt, A.D., Leather, S.R., and Forrest, G.I., The effect of previous defoliation of pole—stage lodgepole pine on plant chemistry and on the growth and survival of pine beauly moth (Panolis flammea) larvae, Oecologia, 1991, vol. 86, no. 1, pp. 31–35.

    Google Scholar 

  • Willis, A.J., Thomas, M.B., and Lawton, J.H., Is the increased vigour of invasive weeds explained by a trade—off between growth and herbivore resistance? Oecologia, 1999, vol. 120, no. 4, pp. 632–640.

    Google Scholar 

  • Winkler, K., Wackers, F., Bukovinszkine-Kiss, G., and van Lenteren, J., Sugar resources are vital for Diadegma semiclausum fecundity under field conditions, Basic Appl. Ecol., 2006, vol. 7, no. 2, pp. 133–140.

    Google Scholar 

  • Zaprometov, M.N., Fenol’nye soedineniya: rasprostranenie, metabolism, i funktsii v rasteniyakh (Plant Phenolic Compounds: Distribution, Metabolism, and Functions), Moscow: Nauka, 1993.

    Google Scholar 

  • Zvereva, E.L., Kozlov, M.V., Niemela, P., and Haukioja, E., Delayed induced resistance and increase in leaf fluctuating asymmetry as responses of Salix borealis to insect herbivory, Oecologia, 1997, vol. 109, no. 3, pp. 368–373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Koltunov.

Additional information

Original Russian Text © E.V. Koltunov, S.A. Bakhvalov, V.N. Bakhvalova, V.N. Zhimerikin, 2014, published in Uspekhi Sovremennoi Biologii, 2014, Vol. 134, No. 3, pp. 270–284.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltunov, E.V., Bakhvalov, S.A., Bakhvalova, V.N. et al. The role of parasitoids and virus infections in the population dynamics of mass species of insects-phyllophages. Biol Bull Rev 4, 484–495 (2014). https://doi.org/10.1134/S2079086414060048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086414060048

Keywords

Navigation