Skip to main content
Log in

On the applicability of Bergmann’s rule to ectotherms: The state of the art

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Bergmann’s rule (BR) is the classic ecogeographic principle that relates the body size of endotherms with environmental temperature (or latitude). The currently available data demonstrate that the latitudinal clines in body size predicted by BR are also observed in ectotherms, being fairly common in some groups. Despite plenty of published data, it is still impossible to estimate the frequency of Bergmann’s clines in ectotherms as thoroughly as has been done for endotherms. Within large taxa of ectotherms (Arthropoda, Mollusca, and Pisces), Bergmann’s clines occur along with converse Bergmann’s and U-shaped clines. Since the classic explanation of BR based on thermoregulation principles is not applicable to most ectotherms, quite a few hypotheses have been proposed that appeal to other foundations in search of such an explanation. Part of them suggests a direct modifying influence of temperature; however, most authors look for an adaptive sense of the increase in the body size of ectotherms at high latitudes and/or low temperatures. It appears that a single universal explanation of all the cases of Bergmann’s variation in ectotherms cannot be formulated. Most likely, the observed clines arise as a result of synergetic interactions between several factors covarying with latitude (or altitude above sea level). It is not always possible to estimate the exact contribution of each of these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D.C. and Church, J.O., Amphibians do not follow Bergmann’s rule, Evolution, 2008, vol. 62, pp. 413–420.

    PubMed  Google Scholar 

  • Alimov, A.F., Funktsional’naya ekologiya presnovodnykh dvustvorchatykh mollyuskov (Functional Ecology of Freshwater Bivalve Mollusks), Leningrad: Nauka, 1981.

    Google Scholar 

  • Angiletta, M.J., Thermal Adaptation: A Theoretical and Empirical Synthesis, Oxford: Oxford Univ. Press, 2009.

    Google Scholar 

  • Angiletta, M.J., Todd, D., and Sears, M.W., Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle, Integr. Comp. Biol., 2004, vol. 44, pp. 498–509.

    Google Scholar 

  • Ashton, K.G., Patterns of within-species body size variation of birds: strong evident for Bergmann’s rule, Global Ecol. Biogeogr., 2002a, vol. 11, pp. 505–523.

    Google Scholar 

  • Ashton, K.G., Do amphibians follow Bergmann’s rule? Can. J. Zool., 2002b, vol. 80, pp. 708–716.

    Google Scholar 

  • Ashton, K.G., Sensitivity of intraspecific latitudinal clines of body size for tetrapods to sampling, latitude and body size, Integr. Comp. Biol., 2004, vol. 44, pp. 403–412.

    PubMed  Google Scholar 

  • Ashton, K.G. and Feldman, Ch.R., Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it, Evolution, 2003, vol. 57, pp. 1151–1163.

    PubMed  Google Scholar 

  • Ashton, K.G., Tracy, M.C., and de Queiroz, A., Is Bergmann’s rule valid for mammals? Am. Nat., 2000, vol. 156, pp. 390–415.

    Google Scholar 

  • Atkinson, D., Temperature and organism size: a biological law for ectotherms? Adv. Ecol. Res., 1994, vol. 25, pp. 1–58.

    Google Scholar 

  • Atkinson, D., Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule, J. Therm. Biol., 1995, vol. 20, nos. 1–2, pp. 61–74.

    Google Scholar 

  • Atkinson, D., Ciotti, B.J., and Montagnes, D.J.S., Protists decrease in size linearly with temperature: ca. 2.5%°C−1, Proc. R. Soc. Lond., 2003, vol. 270, pp. 2605–2611.

    Google Scholar 

  • Azevedo, R.B.R., French, V., and Partridge, L., Temperature modulates epidermal cell size in Drosophila melanogaster, J. Inst. Physiol., 2002, vol. 48, pp. 231–237.

    CAS  Google Scholar 

  • Barlow, N.D., Size distributions of butterfly species and the effect of latitude on species sizes, Oikos, 1994, vol. 71, no. 2, pp. 326–332.

    Google Scholar 

  • Belk, M.C. and Houston, D.D., Bergmann’s rule in ectotherms: a test using freshwater fishes, Am. Nat., 2002, vol. 160, pp. 803–808.

    PubMed  Google Scholar 

  • Bergmann, K.G.L.C., Über die Verhältnisse der wärmeokönomie der Thiere zu ihrer Grösse, Göttinger Stud., 1847, vol. 3, pp. 595–708.

    Google Scholar 

  • Berke, S.K., Jablonski, D., Krug, A.Z., Roy, K., and Tomasowich, A., Beyond Bergmann’s rule: size-latitude relationships in marine Bivalvia world-wide, Global Ecol. Biogeogr., 2013, vol. 22, no. 2, pp. 173–183.

    Google Scholar 

  • Berrigan, D. and Charnov, E.L., Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians, Oikos, 1994, vol. 70, pp. 474–478.

    Google Scholar 

  • Bjørklund, K.R., Actinomma haysi, sp.n., its Holocene distribution and size variation in Atlantic Ocean sediments, Micropaleontology, 1977, vol. 23, no. 1, pp. 114–126.

    Google Scholar 

  • Blackburn, T.M., Gaston, K.J., and Loder, N., Geographic gradients in body size: a clarification of Bergmann’s rule, Div. Distrib., 1999, vol. 5, pp. 165–174.

    Google Scholar 

  • Blackburn, T.M. and Hawkins, B.A., Bergmann’s rule and the mammal fauna of northern North America, Ecography, 2004, vol. 27, pp. 715–724.

    Google Scholar 

  • Blanchet, S., Grenouillet, G., Beauchard, O., Tedesco, P.A., Leprieur, F., Dürr, H.H., Busson, F., Oberdorff, Th., and Brosse, S., Non-native species disrupt the worldwide patterns of freshwater fish body size: implications for Bergmann’s rule, Ecol. Lett., 2010, vol. 13, pp. 421–431.

    PubMed  Google Scholar 

  • Blanckenhorn, W.U., The evolution of body size: what keeps organisms small? Quart. Rev. Biol., 2000, vol. 75, pp. 385–407.

    CAS  PubMed  Google Scholar 

  • Blanckenhorn, W.U. and Demont, M., Bergmann and converse Bergmann latitudinal clines in Arthropods: two ends of a continuum? Integr. Comp. Biol., 2004, vol. 44, pp. 413–424.

    CAS  PubMed  Google Scholar 

  • Bogdanov, I.I., Intraspecific variability of the mites Haemogamasus ambulans Th. and Hirstionyssus isabellinus Oudms. from different geographical populations, in Paraziticheskie nasekomye i kleshchi Sibiri (Parasitic Insects and Mites of Siberia), Novosibirsk: Nauka, 1980, pp. 165–167.

    Google Scholar 

  • Brehm, G. and Fiedler, K., Bergmann’s rule does not apply to geometrid moths along an elevational gradient in an Andean montane rainforest, Global Ecol. Biogeogr., 2004, vol. 13, pp. 7–14.

    Google Scholar 

  • Byllaardt, J.V. and Cyr, H., Does a warmer lake mean smaller benthic algae? Evidence against the importance of temperature-size relationships in natural systems, Oikos, 2011, vol. 120, pp. 162–169.

    Google Scholar 

  • Chernov, Yu.I., Biological diversity: essence and problems, Usp. Sovrem. Biol., 1991, vol. 111, no. 4, pp. 499–507.

    Google Scholar 

  • Chown, S.L. and Gaston, K.J., Body size variation in insects: a macroecological perspective, Biol. Rev., 2010, vol. 85, pp. 139–169.

    PubMed  Google Scholar 

  • Cushman, J.H., Lawton, J.H., and Manly, B.F.J., Latitudinal patterns in European ant assemblages: variation in species richness and body size, Oecologia, 1993, vol. 95, pp. 30–37.

    Google Scholar 

  • Davydova, M.S., Kleshchi Severnoi Azii (rod Gamasellus Berlese, 1892, Parasitiformes, Gamasina) (Mites of Northern Asia (Genus Gamasellus Berlese, 1892, Parasitiformes, Gamasina)), Novosibirsk: Nauka, 1982.

    Google Scholar 

  • Drezner, T.D., Revisiting Bergmann’s rule for saguaros (Carnegiea gigantean (Engelm.) Britt. and Rose): stem diameter patterns over space, J. Biogeogr., 2003, vol. 30, pp. 353–359.

    Google Scholar 

  • Entling, W., Schmidt-Entling, M.H., Bacher, S., Brandl, R., and Nentwig, W., Body size-climate relationships of European spiders, J. Biogeogr., 2010, vol. 37, pp. 477–485.

    Google Scholar 

  • Fisher, J.A.D., Frank, K.T., and Leggett, W.C., Global variation in marine fish body size and its role in biodiversity-ecosystem functioning, Mar. Ecol.: Progr. Ser., 2010, vol. 405, pp. 1–13.

    Google Scholar 

  • Frank, P.W., Latitudinal variation in the life history features of the black turban snail Tegula funebralis (Prosobranchia: Trochidae), Mar. Biol., 1975, vol. 31, pp. 181–192.

    Google Scholar 

  • Gaston, K.J. and Blackburn, T.M., Pattern and Process in Macroecology, Oxford: Blackwell, 2000.

    Google Scholar 

  • Geist, V., Bergmann’s rule is invalid, Can. J. Zool., 1987, vol. 65, pp. 1035–1038.

    Google Scholar 

  • Geraghty, M., Dunn, R.R., and Sanders, N.J., Body size, colony size, and range size in ants (Hymenoptera: Formicidae): are patterns along elevational and latitudinal gradients consistent with Bergmann’s Rule? Myrmekol. News, 2007, vol. 10, pp. 51–58.

    Google Scholar 

  • Golikov, A.N. and Sirenko, B.I., The naticid gastropods in the boreal waters of the western Pacific and Arctic oceans, Malacol. Rev., 1988, vol. 21, pp. 1–41.

    Google Scholar 

  • Goodfriend, G.A., Variation in land-snail shell form and size and its causes: a review, Syst. Zool., 1986, vol. 35, no. 2, pp. 204–223.

    Google Scholar 

  • Gotthard, K., Growth strategies of ectothermic animals in temperate environments, in Animal Developmental Ecology, Atkinson, D. and Thorndyke, M., Eds., Oxford: BIOS Sci. Publ., 2001, pp. 287–304.

    Google Scholar 

  • Hausdorf, B., Latitudinal and altitudinal body size variation among north-west European land snail species, Global Ecol. Biogeogr., 2003, vol. 12, pp. 389–394.

    Google Scholar 

  • Hawkins, B.A. and Lawton, J.H., Latitudinal gradients in butterfly body sizes: is there a general pattern? Oecologia, 1995, vol. 103, pp. 31–36.

    Google Scholar 

  • Heinze, J., Foitzik, S., Fischer, B., Wanke, T., and Kipyatkov, V.E., The significance of latitudinal variation in body size in a Holarctic ant, Leptothorax acervorum, Ecography, 2003, vol. 26, pp. 349–355.

    Google Scholar 

  • Hessen, D.O., Daufresne, M., and Leinaas, H.P., Temperature-size relations from the cellular-genomic perspective, Biol. Rev., 2013, vol. 88, pp. 476–489.

    PubMed  Google Scholar 

  • Ho, Ch.-K., Pennings, S.C., and Carefoot, T.H., Is diet quality an overlooked mechanism for Bergmann’s rule? Am. Nat., 2010, vol. 175, no. 2, pp. 269–276.

    PubMed  Google Scholar 

  • Holčik, J. and Jedlička, L., Geographical variation of some taxonomically important characters in fishes: the case of the bitterling, Rhodeus sericeus, Environ. Biol. Fish., 1994, vol. 41, pp. 147–170.

    Google Scholar 

  • Huey, R.B., Gilchrist, G.W., Carlson, M.L., Berrigan, D., and Serra, L., Rapid evolution of a geographic cline in size in an introduced fly, Science, 2000, vol. 287, pp. 308–309.

    CAS  PubMed  Google Scholar 

  • Hunt, G. and Roy, K., Climate change, body size evolution, and Cope’s Rule in deep-sea ostracodes, Proc. Natl. Am. Acad. Sci., 2006, vol. 103, no. 5, pp. 1347–1352.

    CAS  Google Scholar 

  • Huston, M.A. and Wolverton, S., Regulation of animal size by eNPP, Bergmann’s rule, and related phenomena, Ecol. Monogr., 2011, vol. 81, no. 3, pp. 349–405.

    Google Scholar 

  • James, F.C., Geographic size variation in birds and its relationship to climate, Ecology, 1970, vol. 51, no. 3, pp. 365–390.

    Google Scholar 

  • James, A.C., Azevedo, R.B.R., and Partridge, L., Cellular basis and developmental timing in a size cline of Drosophila melanogaster, Genetics, 1995, vol. 140, pp. 659–666.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson, F., Latitudinal shifts in body size of Enallagma cyathigerum (Odonata), J. Biogeogr., 2003, vol. 30, pp. 29–34.

    Google Scholar 

  • Kaspari, M., Global energy gradients and size in colonial organisms: worker mass and worker number in ant colonies, Proc. Am. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 5079–5083.

    CAS  Google Scholar 

  • Kaspari, M. and Vargo, E., Does colony size buffer environmental variation? Bergmann’s rule and social insects, Am. Nat., 1995, vol. 145, pp. 610–632.

    Google Scholar 

  • Knouft, J.H., Latitudinal variation in the shape of the species body size distribution: an analysis using freshwater fishes, Oecologia, 2004, vol. 139, pp. 408–417.

    PubMed  Google Scholar 

  • Laugen, A.T., Laurila, A., Jönsson, K.I., Söderman, F., and Merilä, J., Do common frogs (Rana temporaria) follow Bergmann’s rule? Evol. Ecol. Res., 2005, vol. 7, pp. 717–731.

    Google Scholar 

  • Lee, H.J. and Boulding, E.G., Latitudinal clines in body size, but not in thermal tolerance or heat-shock cognate 70 (HSC70), in the highly-dispersing intertidal gastropod Littorina keenae (Gastropoda: Littorinidae), Biol. J. Linn. Soc., 2010, vol. 100, pp. 494–505.

    Google Scholar 

  • Lewis, K.B. and Jenkins, Ch., Geographical variation of Noninellina flemingi, Micropaleontology, 1969, vol. 15, no. 1, pp. 1–12.

    Google Scholar 

  • Li, Y., Xu, F., Guo, Zh., Liu, X., Jin, Ch., Wang, Y., and Wang, S., Reduced predator species richness drives the body gigantism of a frog species on the Zhoushan Archipelago in China, J. Anim. Ecol., 2011, vol. 80, pp. 171–182.

    PubMed  Google Scholar 

  • Lindsey, C.C., Body sizes of poikilotherm vertebrates at different latitudes, Evolution, 1966, vol. 20, pp. 456–465.

    Google Scholar 

  • Lindstedt, S.L. and Boyce, M.L., Seasonality, fasting endurance, and body size in mammals, Am. Nat., 1985, vol. 125, no. 6, pp. 873–878.

    Google Scholar 

  • Linse, K., Barnes, D.K.A., and Enderlein, P., Body size and growth of benthic invertebrates along an Antarctic latitudinal gradient, Deep-Sea Res., Part II, 2006, vol. 53, pp. 921–931.

    Google Scholar 

  • Litzgus, J.D., DuRant, S.E., and Mousseau, T.A., Clinal variation in body and cell size in a widely distributed vertebrate ectotherm, Oecologia, 2004, vol. 140, pp. 551–558.

    PubMed  Google Scholar 

  • Lukin, E.I., Darvinizm i geograficheskie zakonomernosti v izmenenii organizmov (Darwinism and Role of Geographical Patterns of Changes in Organisms), Moscow: Akad. Nauk SSSR, 1940.

    Google Scholar 

  • Ma, X., Lu, X., and Meril J., Altitudinal decline of body size in a Tibetan frog, J. Zool., 2009, vol. 279, pp. 364–371.

    Google Scholar 

  • Mayr, E., Animal species and evolution, Cambridge, MA: Harvard Univ. Press, 1963.

    Google Scholar 

  • Medina, A.I., Martí, A.I., and Bidau, C.J., Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann’s rule, J. Biogeogr., 2007, vol. 34, pp. 1439–1454.

    Google Scholar 

  • Meiri, Sh., Bergmann’s Rule-what’s in a name? Global Ecol. Biogeogr., 2011, vol. 20, pp. 203–207.

    Google Scholar 

  • Meiri, Sh. and Dayan, T., On the validity of Bergmann’s rule, J. Biogeogr., 2003, vol. 30, pp. 331–351.

    Google Scholar 

  • Meiri, Sh., Dayan, T., and Simberloff, D., Carnivores, biases and Bergmann’s rule, Biol. J. Linn. Soc., 2004, vol. 81, pp. 579–588.

    Google Scholar 

  • Meiri, Sh. and Thomas, G.H., The geography of body size-challenges of the interspecific approach, Global Ecol. Biogeogr., 2007, vol. 16, pp. 689–693.

    Google Scholar 

  • Millien, V., Lyons, S.K., Olson, L., Smith, F.A., Wilson, A.B., and Yom-Tov, Y., Ecotypic variation in the context of global climate change: revisiting the rules, Ecol. Lett., 2006, vol. 9, pp. 853–869.

    PubMed  Google Scholar 

  • Mina, M.V. and Klevezal, G.A., Rost zhivotnykh: analiz na urovne organizma (Growth of Animals: Analysis at Organism Level), Moscow: Nauka, 1976.

    Google Scholar 

  • Morán, X.A.G., López-Urrutia, A., Calvo-Díaz, A., and Li, W.K.W., Increasing importance of small phytoplankton in a warmer ocean, Global Change Biol., 2010, vol. 16, pp. 1137–1144.

    Google Scholar 

  • Morrison, C. and Hero, J.-M., Geographic variation in life-history characteristics of amphibians: a review, J. Anim. Ecol., 2003, vol. 72, pp. 270–279.

    Google Scholar 

  • Mousseau, T., Ectotherms follow the converse to Bergmann’s rule, Evolution, 1997, vol. 51, pp. 630–632.

    Google Scholar 

  • Nakazawa, T., Ishida, N., Kato, M., and Yamamura, N., Larger body size with higher predation rate, Ecol. Freshwater Fish., 2007, vol. 16, pp. 362–372.

    Google Scholar 

  • Nekola, J.C., Geographic variation in richness and shell size of eastern North American land snail communities, Rec. Western Aust. Mus., 2005, suppl. 68, pp. 39–51.

    Google Scholar 

  • Ochocińska, D. and Taylor, J.R.E., Bergmann’s rule in shrews: geographical variation of body size in Palearctic Sorex species, Biol. J. Linn. Soc., 2003, vol. 78, pp. 365–381.

    Google Scholar 

  • Olabarria, C. and Thurston, M.H., Latitudinal and bathymetric trends in body size of the deep-sea gastropod Troschelia berniciensis (King), Mar. Biol., 2003, vol. 143, pp. 723–730.

    Google Scholar 

  • Olalla-Tárraga, M.Á., Diniz-Filho, A.F., Bastos, R.P., and Rodriguez, M.A., Geographic body size gradients in tropical regions: water deficit and anuran body size in the Brazilian Cerrado, Ecography, 2009, vol. 32, pp. 581–590.

    Google Scholar 

  • Olalla-Tárraga, M.Á. and Rodriguez, M.Á., Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse, Global Ecol. Biogeogr., 2007, vol. 16, pp. 606–617.

    Google Scholar 

  • Olson, V.A., Davies, R.G., Orme, C.D.L., Thomas, G.H., Meiri, Sh., Blackburn, T.M., Gaston, K.J., Owens, J.P.F., and Bennett, P.M., Global biogeography and ecology of body size in birds, Ecol. Lett., 2009, vol. 12, pp. 249–259.

    PubMed  Google Scholar 

  • Opell, B.D., Bergmanns’s size cline in New Zealand marine spray zone spiders (Araneae: Anyphaenidae: Amaurobioides), Biol. J. Linn. Soc., 2010, vol. 101, pp. 78–92.

    Google Scholar 

  • Oufiero, Ch.E., Gartner, G.E.A., Adolph, S.C., and Garland, Th. Jr., Latitudinal climatic variation in bode size and dorsal scale counts in Sceloporus lizards: a phylogenetic perspective, Evolution, 2011, vol. 65, no. 12, pp. 3590–3607.

    PubMed  Google Scholar 

  • Panteleev, P.A., Bergmann’s rule: conceptual and empirical aspects, Usp. Sovrem. Biol., 1994, vol. 114, no. 1, pp. 42–51.

    Google Scholar 

  • Partridge, L. and Coyne, J.A., Bergmann’s rule in ectotherms: is it adaptive? Evolution, 1997, vol. 51, no. 2, pp. 632–635.

    Google Scholar 

  • Peck, L.S. and Harper, E.M., Variation in size of living articulated brachiopods with latitude and depth, Mar. Biol., 2010, vol. 157, pp. 2205–2213.

    Google Scholar 

  • Peter, K.H. and Sommer, U., Phytoplankton cell size: intra- and interspecific effects of warming and grazing, PloS One, 2012, vol. 7, no. 11, pp. 1–9.

    Google Scholar 

  • Pincheira-Donoso, D., The balance between predictions and evidence and the search for universal macroecological patterns: taking Bergmann’s rule back to its endothermic origin, Theory Biosci., 2010, vol. 129, pp. 247–253.

    PubMed  Google Scholar 

  • Pincheira-Donoso, D., Hodgson, D.J., and Tregenza, T., The evolution of body size under environmental gradients in ectotherms: why should Bergmann’s rule apply to lizards? BMC Evol. Biol., 2008, vol. 8, no. 68. http://www.biomedcentral.com/1471-2148/8/68

    Google Scholar 

  • Porter, E.E. and Hawkins, B.A., Latitudinal gradients in colony size for social insects: termites and ants show different patterns, Am. Nat., 2001, vol. 157, pp. 97–106.

    CAS  PubMed  Google Scholar 

  • Poulin, R., Evolutionary influences of body size in free-living and parasitic isopods, Biol. J. Linn. Soc., 1995, vol. 54, pp. 231–244.

    Google Scholar 

  • Poulin, R., The evolution of body size in the Monogenea: the role of host size and latitude, Can. J. Zool., 1996, vol. 74, pp. 726–732.

    Google Scholar 

  • Poulin, R. and Hamilton, W.J., Ecological determinants of body size and clutch size in amphipods: a comparative approach, Funct. Ecol., 1995, vol. 9, pp. 364–370.

    Google Scholar 

  • Radkevich, V.A., Ekologiya (Ecology), Minsk: Vysheishaya Shkola, 1998.

    Google Scholar 

  • Ray, C., The application of Bergmann’s and Allen’s rules to the poikilotherms, J. Morphol., 1960, vol. 106, pp. 85–108.

    CAS  PubMed  Google Scholar 

  • Reeve, M.W., Fowler, K., and Partridge, L., Increased body size confers greater fitness of lower experimental temperature in male Drosophila melanogaster, J. Evol. Biol., 2000, vol. 13, pp. 836–844.

    Google Scholar 

  • Rensch, B., Über die abhängigkeit der grösse, das relativen gewichtes und der oberflächenstruktur der landschneckenschalen von den umweltfaktoren, Z. Morphol. Ökol. Tiere., 1932, vol. 25, pp. 757–807.

    Google Scholar 

  • Rensch, B., Some problems of geographical variation and species-formation, Proc. Linn. Soc. Lond., 1938, vol. 150, pp. 275–285.

    Google Scholar 

  • Rex, M. and Etter, R.J., Bathymetric patterns of body size: implications for deep-sea biodiversity, Deep-Sea Res., Part II, 1998. vol. 45, nos. 1–3, pp. 103–127.

    Google Scholar 

  • Rex, M., Etter, R.J., Clain, A.J., and Hill, M.S., Bathymetric patterns of body size in deep-sea gastropods, Evolution, 1999, vol. 53, no. 4, pp. 1298–1301.

    Google Scholar 

  • Rodríguez, M.á., Olalla-Tárraga, M.á., and Hawkins, B.A., Bergmann’s rule and the geography of mammal body size in the Western Hemisphere, Global Ecol. Biogeogr., 2008, vol. 17, pp. 274–283.

    Google Scholar 

  • Romano, A. and Ficetola, G.F., Ecogeographic variation of body size in the spectacled salamanders (Salamandrina): influence of genetic structure and local factors, J. Biogeogr., 2010, vol. 37, pp. 2358–2370.

    Google Scholar 

  • Rosenzweig, M.L., The strategy of body size in mammalian carnivores, Am. Midl. Nat., 1968, vol. 80, no. 2, pp. 299–315.

    Google Scholar 

  • Roy, K., Jablonski, D., and Valentine, J.W., Climate change, species range limits and body size in marine bivalves, Ecol. Lett., 2001, vol. 4, pp. 366–370.

    Google Scholar 

  • Roy, K. and Martien, K.K., Latitudinal distribution of body size in north-eastern Pacific marine bivalves, J. Biogeogr., 2001, vol. 28, pp. 485–493.

    Google Scholar 

  • Schmidt, D.N., Lazarus, D., Young, J.R., and Kucera, M., Biogeography and evolution of body size in marine plankton, Earth-Sci. Rev., 2006, vol. 78, pp. 239–266.

    Google Scholar 

  • Schmidt, D.N., Thierstein, H.R., Bollmann, J., and Schiebel, R., Abiotic forcing of plankton evolution in the Cenozoic, Science, 2004, vol. 303, pp. 207–210.

    CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen, K., Scaling: Why is Animal Size so Important? New York: Cambridge Univ. Press, 1984.

    Google Scholar 

  • Scholander, P.F., Evolution of climatic adaptation in homeotherms, Evolution, 1955, vol. 9, no. 1, pp. 15–26.

    Google Scholar 

  • Shelomi, M., Where are we now? Bergmann’s rule sensu lato in insects, Am. Nat., 2012, vol. 180, no. 4, pp. 511–519.

    PubMed  Google Scholar 

  • Soininen, J. and Kokocinski, M., Regional diatom body size distributions in streams: does size vary along environmental, spatial and diversity gradients? Ecoscience, 2006, vol. 13, no. 2, pp. 271–274.

    Google Scholar 

  • Sólymos, P. and Domokos, T., A possible connection between macroclimate and shell morphometry of Granaria frumentum (Draparnaud, 1801) (Gastropoda: Chondrinidae), Malakol. Tájékoztató, 1999, vol. 17, pp. 75–82.

    Google Scholar 

  • Song, H., Tong, J., and Chez, Z.Q., Evolutionary dynamics of the Permian-Triassic foraminifer size: evidence for Lilliput effect in the end-Permian mass extinction and its aftermath, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2011, vol. 308, pp. 98–110.

    Google Scholar 

  • Stelzer, C.P., Phenotypic plasticity of body size at different temperatures in a planktonic rotifer: mechanisms and adaptive significance, Funct. Ecol., 2002, vol. 16, pp. 835–841.

    Google Scholar 

  • Stillwell, R.C., Are latitudinal clines in body size adaptive? Oikos, 2010, vol. 119, pp. 1387–1390.

    Google Scholar 

  • Stillwell, R.C., Morse, G.E., and Fox, Ch.W., Geographic variation in body size and sexual size dimorphism of a seed-feeding beetle, Am. Nat., 2007, vol. 170, no. 3, pp. 358–369.

    PubMed  Google Scholar 

  • Terent’ev, P.V., Influence of climate temperature on the size of shells of the land mollusks, Zool. Zh., 1970, vol. 49, no. 1, pp. 5–10.

    Google Scholar 

  • Thomas, P.A., Geographic variation of the rabbit tick, Haemaphysalis leporis/palustris in North America, Univ. Kansas Sci. Bull., 1968, vol. 47, pp. 787–828.

    Google Scholar 

  • Ulrich, W. and Fiera, C., Environmental correlates of body size distributions of European springtails (Hexapoda: Collembola), Global Ecol. Biogeogr., 2010, vol. 19, pp. 905–915.

    Google Scholar 

  • Van Voorhies, W.A., Bergmann size clines: a simple explanation for their occurrence in ectotherms, Evolution, 1996, vol. 50, no. 3, pp. 1259–1264.

    Google Scholar 

  • Vermeij, G.J., Biogeography and Adaptation: Patterns of Marine Life, Cambridge (MA): Harvard Univ. Press, 1978.

    Google Scholar 

  • Vermeij, G.J., The evolution of gigantism on temperate seashores, Biol. J. Linn. Soc., 2012, vol. 106, pp. 776–793.

    Google Scholar 

  • Vinarski, M.V., Geographic variations in freshwater mollusks, Zh. Obshch. Biol., 2012, vol. 73, no. 2, pp. 125–137.

    Google Scholar 

  • Watt, C., Mitchell, S., and Salewski, V., Bergmann’s rule; a concept cluster? Oikos, 2010, vol. 119, pp. 89–100.

    Google Scholar 

  • Wilson, A.B., Fecundity selection predicts Bergmann’s rule in syngnathid fishes, Mol. Ecol., 2009, vol. 18, pp. 1263–1272.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Vinarski.

Additional information

Original Russian Text © M.V. Vinarski, 2013, published in Zhurnal Obshchei Biologii, 2013, Vol. 74, No. 5, pp. 327–339.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinarski, M.V. On the applicability of Bergmann’s rule to ectotherms: The state of the art. Biol Bull Rev 4, 232–242 (2014). https://doi.org/10.1134/S2079086414030098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086414030098

Keywords

Navigation