Skip to main content
Log in

Current views on vision in mammals

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The review summarizes the available data on vision in mammals, including visual pigments, color and contrast vision, and visual behavior in different species. It has been shown that, in the course of evolution, mammals were gradually losing elements of the daylight cone vision system typical of other vertebrates. Monotremes still possess SWS2 (blue-sensitive 2) and MWS/LWS (green/red-sensitive) cone visual pigments, as well as RH1 rod pigment. Eutheria, except some primates, also have two cone visual pigments, SWS1 (ultraviolet/violetor blue-sensitive 1) and MWS/LWS, along with RH1 of rods. In humans and some other higher primates, gene duplication resulted in the acquisition of a new visual pigment, MWS, and enabled trichromatic vision. Marine mammals (cetaceans and pinnipeds) and some species of other orders have lost also the SWS1 pigment, which is probably related to the specific processing of the information received by these cones. We discuss current views on mammal vision based on two cone pigments and rods and provide the data on spectral sensitivity peaks that characterize visual pigments in different species and orders, as well as the data on spatial contrast sensitivity. High levels of visual acuity are found in ungulates and primates (up to 20–38 cycles/deg), and the highest acuity characterizes humans with their specialized fovea (30–60 cycles/deg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D.H. and Jacobs, G.H., Color vision and visual sensitivity in the California ground squirrel (Citellus beecheyi), Vision Res., 1972, vol. 12, no. 12, pp. 1995–2004.

    PubMed  CAS  Google Scholar 

  • Applebury, M.L., Antoch, M.P., Baxter, L.C., Chun, L.L.Y., Falk, J.D., Farhangfar, F., Kage, K., Krzystolik, M.G., Lyass, L.A., and Robbins, J.T., The murine cone photoreceptor: a single cone type expresses both S and Mopsins with retinal spatial patterning, Neuron, 2000, vol. 27, no. 3, pp. 513–523.

    PubMed  CAS  Google Scholar 

  • Arrese, C.A., Beazley, L.D., and Neumeyer, C., Behavioural evidence for marsupial trichromacy, Curr. Biol., 2006a, vol. 16, no. 6, pp. 193–194.

    Google Scholar 

  • Arrese, C.A., Hart, N.S., Thomas, N., Beazley, L.D., and Shand, J., Trichromacy in Australian marsupials, Curr. Biol., 2002, vol. 12, pp. 657–660.

    PubMed  CAS  Google Scholar 

  • Arrese, C.A., Beazley, L.D., Ferguson, M.C., Oddy, A., and Hunt, D.M., Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials, Gene, 2006b, vol. 381, pp. 13–17.

    PubMed  CAS  Google Scholar 

  • Arrese, C.A., Oddy, A.Y., Runham, P.B., Hart, N.S., Shand, J., Hunt, D.M., and Beazly, L.D., Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus), Philos. Trans. R. Soc., B, 2005, vol. 272, no. 1565, pp. 791–796.

    CAS  Google Scholar 

  • Arrese, C., Dunlop, S.A., Harman, A.M., Braekevelt, C.R., Ross, W.M., Shand, J., and Beazleya, L.D., Retinal structure and visual acuity in a polyprotodont marsupial, the fat-tailed dunnart (Smithopsis crassicaudata), Brain Behav. Evol., 1999, vol. 53, no. 3, pp. 110–126.

    Google Scholar 

  • Blakeslee, B., Jacobs, G.H., and Neitz, J., Spectral mechanisms in the tree squirrel retina, J. Comp. Physiol., A, 1988, vol. 162, pp. 773–780.

    CAS  Google Scholar 

  • Birgersson, B., Alm, U., Forkman, B.B., Color vision in fallow deer: a behavioural study, Anim. Behav., 2001, vol. 61, pp. 367–371.

    Google Scholar 

  • Bobu, C., Craft, C.M., and Masson-Pevet, M., Photoreceptor organization and rhythmic phagocytosis in the Nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology, Invest. Ophthalmol. Visual Sci., 2006, vol. 47, no. 7, pp. 3109–3118.

    Google Scholar 

  • Bonds, A.B., Casagrande, V.A., Norton, T.T., and de Bruyn, E.J., Visual resolution and sensitivity in a nocturnal primate (galago) measured with visual evoked potentials, Vision Res., 1987, vol. 27, no. 6, pp. 845–857.

    PubMed  CAS  Google Scholar 

  • Bumsted, K. and Hendrickson, A., Distribution and development of short-wavelength cones differ between macaca monkey and human fovea, J. Comp. Neurol., 1999, vol. 403, no. 4, pp. 502–516.

    PubMed  CAS  Google Scholar 

  • Cao, D., Lee, B.B., and Sun, H., Combination of rod and cone inputs in parasol ganglion cell of the magnocellular partway, J. Vision., 2010, vol. 10, no. 4, pp. 1–15.

    Google Scholar 

  • Carmona, F.D., Glösmann, M., Ou, J., Jimenez, R., and Collinson, J.M., Retinal development and function in a ‘blind’ mole, Proc. R. Soc. B, 2010, vol. 277, pp. 1513–1522.

    PubMed  Google Scholar 

  • Carroll, J., Murphy, C.J., Neitz, M., Hoeve, J.N.V., and Neitz, J., Photopigment basis for dichromatic color vision in the horse, J. Vision., 2001, vol. 1, pp. 80–87.

    CAS  Google Scholar 

  • Carvalho, L.S., Cowing, J.A., Wilkie, S.E., Bowmaker, J.K., and Hunt, D.M., Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle, Curr. Biol., 2006, vol. 16, no. 3, pp. 81–83.

    Google Scholar 

  • Casagrande, V.A., Norton, N.N., and de Bruyn, E.J., Visual resolution and sensitivity in nocturnal primate (galago) measured with visual evoked potentials, Vision Res., 1987, vol. 27, no. 6, pp. 845–857.

    PubMed  Google Scholar 

  • Catania, K.C., Hare, J.F., and Campbell, K.L., Water shrews detect movement, shape and smell to find prey underwater, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 2, pp. 571–576.

    PubMed  CAS  Google Scholar 

  • Cauteren, K.C. and Pipas, M.J., A review of color vision in white-tailed deer, Wildl. Soc. Bull., 2003, vol. 31, no. 3, pp. 684–691.

    Google Scholar 

  • Chavez, A.E., Bozinovic, F., Peichl, L., and Palacios, A., Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus Octodon (Rodentia): implications for visual ecology, Invest. Ophthalmol. Visual Sci., 2003, vol. 44, no. 5, pp. 2290–2296.

    Google Scholar 

  • Cowing, J.A., Arrese, A.A., Davies, W.L., Beazley, L.D., and Hunt, D.M., Cone visual pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratum), Proc. R. Soc. B, 2008, vol. 275, pp. 1491–1499.

    PubMed  CAS  Google Scholar 

  • Cowing, J.A., Poopalasundaram, S., Wilkie, S.E., Robinson, P.R., Bowmaker, J.K., and Hunt, D.M., The molecular mechanisms for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments, Biochem. J., 2002, vol. 367, pp. 129–135.

    PubMed  CAS  Google Scholar 

  • Crescitelli, F. and Pollak, J.D., Dichromacy in the antelope ground squirrel, Vision Res., 1972, vol. 12, pp. 1553–1586.

    PubMed  CAS  Google Scholar 

  • D’Angelo, G.J., Glasser, A., Wendt, M., Williams, G.A., Osborn, D.A., Gallagher, G.R., Warren, R.J., Miller, K.V., and Pardue, M.T., Visual specialization of an herbivore prey species, the white-tailed deer, Can. J. Zool., 2008, vol. 86, no. 7, pp. 735–743.

    Google Scholar 

  • Davies, W.L., Carvalho, L.S., Cowing, J.A., Beazley, L.D., Hunt, D.M., and Arrese, C.A., Visual pigments of the platypus: a novel route to mammalian color vision, Curr. Biol., 2008, vol. 17, no. 5, pp. 162–163.

    Google Scholar 

  • Deeb, S.S., Visual Pigments and Color Vision in Marsupial and Monotremes. Marsupial Genetics and Genomics, Deakin, J.E., et al., Eds., London: Springer, 2010, part 19, pp. 403–414.

  • Deeb, S.S., Wakefield, M.J., Tada, T., Marotte, L., Yokoyama, S., and Graves, J.A.M., The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral turning, and evolution, Mol. Biol. Evol., 2003, vol. 20, no. 10, pp. 1642–1649.

    PubMed  CAS  Google Scholar 

  • Dkhissi-Benuahya, O., Szél, A., Grip, W.J., and de Cooper, H.M., Short and mid-wavelength cone distribution in a nocturnal strepsirrhine primate (Microcebus murinus), J. Comp. Neurol., 2001, vol. 438, no. 4, pp. 490–504.

    Google Scholar 

  • Donaghy, M., The contrast sensitivity, spatial resolution and velocity tuning of the cat’s optokinetic reflex, J. Physiol., 1980, vol. 300, pp. 353–365.

    PubMed  CAS  Google Scholar 

  • Dulai, K.S., von Dornum, M., Mollon, J.D., and Hunt, D.M., The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates, Genome Res., 1999, vol. 9, pp. 629–638.

    PubMed  CAS  Google Scholar 

  • Ebeling, W., Natoli, R.C., and Hemmi, J.M., Diversity of color vision: not all Australian marsupials are trichromatic, PLoS One, 2010, vol. 5, no. 12, pp. 1431.

    Google Scholar 

  • Eklöf, J., Vision in echolocating bats, PhD Thesis, Goteborg Univ., 2003. http://www.fladdermus.net/thesis.html

    Google Scholar 

  • Feller, K.D., Lagerholm, S., Clubwala, R., Silver, M.T., Haughey, D., Ryan, J.M., Loew, E.R., Deutschlander, M.E., and Kenyon, K.L., Characterization of photoreceptor cell types in the little brown bat Myotis lucifugus (Vespertilionidae), Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2009, vol. 154, pp. 412–418.

    CAS  Google Scholar 

  • Foelix, R.F., Kretz, R., and Rager, G., Structure and postnatal development of photoreceptors and their synapses in retina of tree shrew (Tupaia belangery), Cell Tissue Res., 1987, vol. 247, pp. 287–297.

    PubMed  CAS  Google Scholar 

  • Gaillard, F., Kuny, S., and Sauve, Y., Topographic arrangement of S-cone photoreceptors in the retina of the diurnal Nile grass rat (Arvicanthis niloticus), Invest. Ophthalmol. Visual Sci., 2009, vol. 50, no. 11, pp. 5426–5434.

    Google Scholar 

  • Gaillard, F., Bonfield, S., Gilmour, G.S., Kuny, S., Mema, S.C., Martin, B.T., Smale, L., Crowder, N., Stell, W.K., and Sauve, Y., Retinal anatomy and visual performance in a diurnal cone-rich laboratory rodent, the nile grass rat (Arvicanthis niloticus), J. Comp. Neurol., 2008, vol. 510, pp. 525–538.

    PubMed  Google Scholar 

  • Glösmann, M., Steiner, M., Peichl, L., and Ahnelt, P.K., Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole, J. Vision, 2008, vol. 8, no. 4, pp. 1–12.

    Google Scholar 

  • Gomes, U.R., Pessoa, D.M.A., Suganuma, E., Tomaz, C., and Pessoa, V.F., Influence of stimuli size on color discrimination in capuchin monkey, Am. J. Primatol., 2005, vol. 67, pp. 437–446.

    PubMed  Google Scholar 

  • Govardovskii, V.I., Röhlich, P., Szél, A., and Khokhlova, T.V., Cones in the retina of the Mongolian gerbil, Meriones unguiculatus: an immunocytochemical and electrophysiological study, Vision Res., 1992, vol. 32, no. 1, pp. 19–27.

    PubMed  CAS  Google Scholar 

  • Govardovskii, V.I., Fyhrquist, N., Reuter, T., Kuzmin, D.G., and Donner, K., In search of the visual pigment template, Vision Neurosci., 2000, vol. 17, pp. 509–528.

    CAS  Google Scholar 

  • Gouras, P., The function of the midget cell system in primate color vision, Vision Res., 1971, vol. 11,suppl. 3, pp. 397–410.

    Google Scholar 

  • Gouras, P., The role of S-cones in human vision, Doc. Ophthalmol., 2003, vol. 106, pp. 5–11.

    PubMed  Google Scholar 

  • Griebel, U. and Schmid, A., Brightness discrimination ability in the west Indian manatee (Trichechus manatus), J. Exp. Biol., 1997, vol. 200, pp. 1587–1592.

    PubMed  CAS  Google Scholar 

  • Griebel, U. and Peichl, L., Color vision in aquatic mammals-facts and open question, Aquat. Mamm., 2003, vol. 29, no. 1, pp. 18–30.

    Google Scholar 

  • Grim, M.M. and Hodos, W., Spatial contrast sensitivity of birds, J. Comp. Physiol., A, 2006, vol. 192, pp. 523–534.

    Google Scholar 

  • Hanggi, E.B., Ingersoll, J.E., and Waggoner, T.L., Color vision in horses (Equus caballus): deficiencies identifies using a pseudoisochromatic plate test, J. Comp. Psychol., 2007, vol. 121, no. 1, pp. 65–72.

    PubMed  Google Scholar 

  • Hanke, F.D. and Dehnhardt, G., Aerial visual acuityin harbor seals (Phoca vitulina) as a function of luminance, J. Comp. Physiol., A, 2009, vol. 195, pp. 643–650.

    Google Scholar 

  • Hanna, M.C., Platts, J.T., and Kirk, E.F., Identification of a gene within the tandem array of red and green color pigment genes, Genomics, 1997, vol. 43, no. 3, pp. 384–386.

    PubMed  CAS  Google Scholar 

  • Hemmi, J.M. and Mark, R.F., Visual acuity, contrast sensitivity and retinal magnification in a marsupial, the tammar wallaby (Macropus eugenii), J. Comp. Physiol., A, 1998, vol. 183, pp. 379–387.

    CAS  Google Scholar 

  • Henderson, Z., Finlay, B.L., and Wikler, K.C., Development of ganglion cell topography in ferret retina, J. Neurosci., 1988, no. 8, pp. 1194–1205.

    Google Scholar 

  • Hetling, J.R., Baig-Silva, M.S., Comer, C.M., Pardue, M.T., Samaan, D.Y., Qtaishat, N.M., and Pepperberg, D.R., Features of visual function in naked mole-rat Heterocephalus glader, J. Comp. Physiol., A, 2005, vol. 191, pp. 317–330.

    Google Scholar 

  • Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D.R., Organization of the human trichromatic cone mosaic, J. Neurosci., 2005, vol. 25, no. 42, pp. 9669–9679.

    PubMed  CAS  Google Scholar 

  • Hunt, D.M., Carvalho, L.S., Cowing, J.A., and Davies, W.L., Evolution and spectral tuning of visual pigments in birds and mammals, Philos. Trans. R. Soc., B, 2009a, vol. 364, pp. 2941–2955.

    CAS  Google Scholar 

  • Hunt, D.M., Chan, J., Carvalho, L.S., Hokoc, J.N., Ferguson, M.C., Arrese, C.A., and Beazley, L.D., Cone visual pigments in two species of South American marsupials, Gene, 2009b, vol. 433, pp. 50–55.

    PubMed  CAS  Google Scholar 

  • Jacobs, G.H., Evolution of color vision in mammals, Philos. Trans. R. Soc., B, 2009, vol. 364, pp. 2957–2967.

    CAS  Google Scholar 

  • Jacobs, G.H. and Neitz, J., Spectral mechanisms and color vision in the tree shrew (Tupaia belangery), Vision Res., 1986, vol. 26, no. 2, pp. 291–298.

    PubMed  CAS  Google Scholar 

  • Jacobs, G.H. and Neitz, J., Cone monochromacy and reversed Purkinje shift in the gerbil, Experientia, 1989, vol. 45, no. 4, pp. 317–403.

    PubMed  CAS  Google Scholar 

  • Jacobs, G.H. and Deegan, J.F. II, Cone photopigments in nocturnal and diurnal procyonids, J. Comp. Physiol., A, 1992, vol. 171, pp. 351–358.

    CAS  Google Scholar 

  • Jacobs, G.H. and Deegan, J.F. II, Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus): characteristics and mechanisms, Vision Res., 1994, vol. 34, pp. 1433–1441.

    PubMed  CAS  Google Scholar 

  • Jacobs, G.H. and Deegan, J.F. II, Cone pigment variations in four genera of new world monkeys, Vision Res., 2003, vol. 43, pp. 227–236.

    PubMed  Google Scholar 

  • Jacobs, G.H. and Williams, G.A., Cone pigments in a North American marsupial, the opossum (Didelphis virginiana), J. Comp. Physiol., A, 2010, vol. 196, pp. 379–384.

    CAS  Google Scholar 

  • Jacobs, G.H., Birch, D.G., and Blakeslee, B., Visual acuity and spatial contrast sensitivity in tree squirrels, Behav. Processes, 1982, vol. 7, no. 4, pp. 367–375.

    Google Scholar 

  • Jacobs, G.H., Neitz, M., and Neitz, J., Mutation in S-cone pigment genes and the absence of color vision in two species of nocturnal primate, Proc. R. Soc. Lond. B, 1996, vol. 263, pp. 705–710.

    CAS  Google Scholar 

  • Jacobs, G.H., Fenwick, J.A., and Williams, G.A., Cone-based vision of rats for ultraviolet and visible lights, J. Exp. Biol., 2001, vol. 204, pp. 2439–2446.

    PubMed  CAS  Google Scholar 

  • Jacobs, G.H., Blakeslee, B., McCourt, M.E., and Tootell, R.B.H., Visual sensitivity of ground squirrels to spatial and temporal luminance variations, J. Comp. Physiol., A, 1980, vol. 136, pp. 291–299.

    Google Scholar 

  • Jacobs, G.H., Deegan, J.F. II, Crognale, M.A., and Fenwick, J.A., Photopigments of dogs and foxes and their implications for canid vision, Vision Neurosci., 1993, vol. 10, pp. 173–180.

    CAS  Google Scholar 

  • Jacobs, G.H., Fenwick, J.C., Calderone, J.B., and Deeb, S.S., Human cone pigments expressed in transgenic mice yields altered vision, J. Neurosci., 1999, vol. 19, no. 8, pp. 3258–3265.

    PubMed  CAS  Google Scholar 

  • Jacobs, G.H., Calderon, J.B., Fenwick, J.A., Krogh, K., and Williams, G.A., Visual adaptations in a diurnal rodent, Octodon degus, J. Comp. Physiol., A, 2003, vol. 189, pp. 347–361.

    CAS  Google Scholar 

  • Jacobs, G.H., Deegan, J.F. II, Neitz, J., Murphy, B.P., Miller, K.V., and Marchinton, R.L., Electrophysiological measurements of spectral mechanisms in the retinas of two cervids: white-tailed deer (Odocoileus virginianus) and fallow deer (Dama dama), J. Comp. Physiol., A, 1994, vol. 174, pp. 551–557.

    CAS  Google Scholar 

  • Jacobson, S.G., Franklin, K.B.J., and McDonald, W.I., Vision acuity of the cat, Vision Res., 1976, vol. 16, no. 10, pp. 1141–1143.

    PubMed  CAS  Google Scholar 

  • Juliusson, B., Bergström, A., Röhlich, P., Ehinger, B., van Veen, T., and Szél, A., Complimentary cone fields of the rabbit retina, Invest. Ophthalmol. Visual Sci., 1994, vol. 35, no. 3, pp. 811–818.

    CAS  Google Scholar 

  • Kang, I., Reem, R., Kaczmarowski, A.L., and Malpeli, J.G., Contrast sensitivity of cats and humans in scotopic and mesopic conditions, J. Neurophysiol., 2009, vol. 102, pp. 831–840.

    PubMed  Google Scholar 

  • Khokhlova, T.V., Vision of common noctule (Nyctalus noctula), in Voprosy teriologii. Rukokrylye (The Questions of Theriology: Chiroptera), Moscow: Nauka, 1980, pp. 199–201.

    Google Scholar 

  • Khokhlova, T.V., Vision of Afghan pika: ultrastructure of photoreceptors, in Ekologiya pishchukh fauny SSSR (Ecology of Pika in Fauna of USSR), Moscow: Mosk. Gos. Univ., 1991, pp. 76–78.

    Google Scholar 

  • Khokhlova, T.V., Ecological and morphological features of photoreceptors of retina of rodents with different diurnal activity, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Mosk. Gos. Univ., 1996.

    Google Scholar 

  • Khokhlova, T.V., Photoreceptors of birds: molecular genetics of vision pigments, structural and functional features of the cells and their topography, Sensor. Sist., 2009, vol. 23, no. 2, pp. 91–105.

    Google Scholar 

  • Kremer, J., Spatial and temporal response properties of the major retino geniculate pathways of Old and New World monkeys, Doc. Ophthalmol., 1999, vol. 95, pp. 229–245.

    Google Scholar 

  • Levenson, D.H., Ponganis, P.J., Crognale, M.A., Deegan, J.F. II, Dizon, A., and Jacobs, G.H., Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter, J. Comp. Physiol., A, 2006, vol. 192, pp. 833–843.

    CAS  Google Scholar 

  • Loew, E.R., The visual pigments of the grey squirrel Sciurus carolinensis leucotis, J. Physiol., 1975, vol. 251, pp. 48–49.

    Google Scholar 

  • Lukáts, A., Dkhissi-Benyaha, O., Szepessy, Z., Röhlich, P., Vigh, B., Bennett, N.C., Cooper, H.M., and Szél, A., Visual pigment co-expression in all cones of two rodents, the Siberian hamster and Pouched mouse, Invest. Ophthalmol. Visual Sci., 2002, vol. 43, pp. 2468–2473.

    Google Scholar 

  • Maffei, L., Fiorentini, A., and Bisti, S., The visual acuity of the lynx, Vision Res., 1990, vol. 30, no. 4, pp. 527–528.

    PubMed  CAS  Google Scholar 

  • Mass, A.M. and Supin, A.Y., Ocular anatomy, retinal ganglion cell distribution, and visual resolution in the grey whale, Eschrichtius gibbosus, Aquat. Mamm., 1997, vol. 23, no. 1, pp. 17–28.

    Google Scholar 

  • Mass, A.M. and Supin, A.Y., Retinal topography and visual acuity in the riverine tucuxi (Sotalia fluviatilis), Aquat. Mamm., 1999, vol. 15, no. 2, pp. 351–365.

    Google Scholar 

  • Mass, A.M. and Supin, A.Y., Retinal resolution in the sea otter, Enhydra lutris, Brain, Behav. Evol., 2000, vol. 55, pp. 111–119.

    CAS  Google Scholar 

  • Merigan, W.H., The contrast sensitivity of the squirrel monkey (Saimiry sciureus), Vision Res., 1976, vol. 16, no. 4, pp. 375–379.

    PubMed  CAS  Google Scholar 

  • Merigan, W.H. and Katz, L.M., Spatial resolution across the macaque retina, Vision Res., 1990, vol. 30, no. 7, pp. 985–991.

    PubMed  CAS  Google Scholar 

  • Müller, P.E. and Murphy, C.J., Vision in dogs, J. Am. Vet. Med. Assoc., 1995, vol. 207, pp. 1623–1634.

    Google Scholar 

  • Müller, B., Glösmann, M., Peichl, L., Knop, G.C., Hagemann, C., and Ammermüller, J., Bat eyes have ultraviolet-sensitive cone photoreceptors, PloS One, 2009, vol. 4, no. 7, pp. 6390.

    Google Scholar 

  • Nathans, J., The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments, Neuron, 1999, vol. 24, pp. 299–312.

    PubMed  CAS  Google Scholar 

  • Neitz, J. and Neitz, M., The genetics of normal and defective color vision, Vision Res., 2011, vol. 51, pp. 633–651.

    PubMed  CAS  Google Scholar 

  • Neitz, J., Geist, T., and Jacobs, G.H., Color vision in the dog, Vis. Neurosci., 1989, vol. 3, no. 3, pp. 119–125.

    PubMed  CAS  Google Scholar 

  • Neitz, J., Carroll, J., and Neitz, M., Color vision. Almost reason enough for having eyes, Opt. Photonics News., 2001, pp. 26–33.

    Google Scholar 

  • Odom, J.V., Bromberg, N.M., and Dawson, W.W., Canine visual acuity: retinal and cortical field potentials evoked by pattern stimulation, Am. J. Physiol., 1983, vol. 245, pp. 637–641.

    Google Scholar 

  • Orlov, O.Yu. and Podgornyi, O.V., Cones and retinal pigment epithelium of three species of diurnal rodents, Sensor. Sist., 2009, vol. 23, no. 4, pp. 318–326.

    Google Scholar 

  • Ott, M., Visual accommodation in vertebrates: mechanisms, physiological response and stimuli, J. Comp. Physiol., A, 2006, vol. 192, pp. 97–111.

    Google Scholar 

  • Pack, A.A. and Herman, L., Sensory integration in the bottle-nosed dolphin: immediate recognition of complex shapes across the senses of echolocation and vision, J. Acoust. Soc. Am., 1995, vol. 98, no. 2, part 1, pp. 722–733.

    PubMed  CAS  Google Scholar 

  • Palacios, A.G., Bozinovic, F., Vielma, A., Arrese, C.A., Hunt, D.M., and Peichl, L., Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839), J. Comp. Neurol., 2010, vol. 518, pp. 1589–1602.

    PubMed  CAS  Google Scholar 

  • Parry, J.W. and Bowmaker, J., Visual pigment coexpression in guinea pig cones: a microspectrophotometric study, Invest. Ophthalmol. Visual Sci., 2002, vol. 43, no. 5, pp. 1662–1665.

    Google Scholar 

  • Pavlinov, I.Ya., Taxonomy of existing mammalians, in Tr. Zoologicheskogo muzeya (Trans. Zool. Mus.), Moscow: Mosk. Gos. Univ., vol. 46, 2003.

    Google Scholar 

  • Peichl, L., Diversity of mammalian photoreceptor properties: adaptation to habitat and lifestyle?, Anat. Rec., 2005, vol. 287A, pp. 1001–1012.

    CAS  Google Scholar 

  • Peichl, L., Künzle, H., and Vogel, P., Photoreceptor types and distributions in the retina of insectivores, Vision Neurosci., 2000, vol. 17, pp. 937–948.

    CAS  Google Scholar 

  • Pettigrew, J.D., Manger, P.R., and Fine, S.L., The sensory world of platypus, Philos. Trans. R. Soc., B, 1998, vol. 353, pp. 1199–1210.

    CAS  Google Scholar 

  • Pettigrew, J.D., Bhagwandin, A., Haagensen, M.M., and Manager, P.R., Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of African elephant (Loxodonta africana), Brain, Behav. Evol., 2010, vol. 75, pp. 251–261.

    Google Scholar 

  • Petry, H.M. and Harosi, F.I., Visual pigments of the tree shrew (Tupaia belangery) and greater galago (Galago crassicaudatus): a microspectrophotometric investigation, Vision Res., 1990, vol. 30, no. 6, pp. 839–851.

    PubMed  CAS  Google Scholar 

  • Pick, D.F., Lovell, G., Brown, S., and Dail, D., Equine color perception revisited, Appl. Anim. Behav. Sci., 1994, vol. 42, no. 1, pp. 61–65.

    Google Scholar 

  • Pretterer, G., Bubna-Littitz, H., Windischbauer, G., Gabler, C., and Griebel, U., Brightness discrimination in the dog, J. Vision, 2004, vol. 4, pp. 241–249.

    Google Scholar 

  • Ringo, J., Wolbarsht, M.L., Wagner, H.G., Crocker, R., and Amthor, F., Trichromatic vision in the cat, Science, 1977, vol. 198, no. 4318, pp. 753–755.

    PubMed  CAS  Google Scholar 

  • Rockhill, R.L., Daly, F. J., MacNeil, M.A., Brown, S.P., and Masland, R., The diversity of ganglion cells in a mammalian retina, J. Neurosci., 2002, vol. 22, no. 9, pp. 3831–3843.

    PubMed  CAS  Google Scholar 

  • Rozhkova, G.I. and Matveev, S.G., Zrenie detei: problemy otsenki i funktsional’noi korrektsii (Child’s Vision: Complications in Testing and Functional Correction), Stupin, A.Ya., Ed., Moscow: Nauka, 2007.

  • Rozhkova, G.I., Panova, I.G., Khokhlova, T.V., and Orlov, O.Yu., Mechanisms of image focusing in the camera type eyes in vertebrates: A review, Sensor. Sist., 2005, vol. 19, no. 3, pp. 181–211.

    Google Scholar 

  • Sandmann, D., Boycott, B.B., and Peichl, L., Blue-cone horizontal cells in the retinae of horses and other Equidae, J. Neurosci., 1996, vol. 16, no. 10, pp. 3381–3396.

    PubMed  CAS  Google Scholar 

  • Sanyal, S., Jansen, H.G., de Grip, W.J., Nevo, E., and de Jang, W.W., The eye of the blind mole rat, Spalax ehrenbergi, Invest. Ophthalmol. Visual Sci., 1990, vol. 31, no. 7, pp. 1398–1404.

    CAS  Google Scholar 

  • Schleich, C.E., Vielma, A., Glösman, M., Palacious, A., and Peichl, L., Retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Ctenomys): Morphology, topography, and spectral sensitivity, J. Comp. Neurol., 2010, vol. 518, pp. 4001–4015.

    PubMed  Google Scholar 

  • Schmid, K., Schmid, L., Wildsoet, C.F., and Pettigrew, J.D., Retinal topography in the koala (Phascolarctos cinereus), Brain, Behav. Evol., 1992, vol. 39, no. 1, pp. 8–16.

    CAS  Google Scholar 

  • Shaaban, S.A., Crognale, M.A., Calderone, J.B., Huang, J., Jacobs, G.H., and Deeb, S.S., Transgenic mice expressing a functional human photopigment, Invest. Ophthalmol. Visual Sci., 1998, vol. 39, no. 6, pp. 1036–1043.

    CAS  Google Scholar 

  • Shapley, R. and Hawken, M.J., Color in the cortex: single- and double-opponent cells, Vision Res., 2011, vol. 51, pp. 701–717.

    PubMed  Google Scholar 

  • Shinozaki, A., Hosaka, Y., Imagawa, T., and Uehara, M., Topography of ganglion cells and photoreceptors in the sheep retina, J. Comp. Neurol., 2010, vol. 518, pp. 2305–2315.

    PubMed  Google Scholar 

  • Shostak, Y., Ding, Y., and Casagrande, V.A., Neurochemical comparison of synaptic arrangements of parvocellular, magnocellular, and koniocellular geniculate partways in owl monkey (Aotus trivirgatus) visual cortex, J. Comp. Neurol., 2003, vol. 456, no. 1, pp. 12–28.

    PubMed  Google Scholar 

  • Soucy, E., Wang, Y., Nirenberg, S., Nathans, J., and Meister, M., A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina, Neuron, 1998, vol. 21, pp. 481–493.

    PubMed  CAS  Google Scholar 

  • Souza, G.S., Gomes, B.D., and Silveira, L.C.L., Comparative neurophysiology of spatial luminance contrast sensitivity, Psychol. Neurosci., 2011, vol. 4, no. 1, pp. 29–48.

    Google Scholar 

  • Supin, A.Y., Popov, V.V., and Mass, A.M., The Sensory Physiology of Aquatic Mammals, Dordrecht: Kluwer, 2001.

    Google Scholar 

  • Tailby, C., Solomon, S.G., and Lennie, P., Functional asymmetries in visual partway scarring S-cone signals in macaque, J. Neurosci., 2008, vol. 28, no. 15, pp. 4078–4087.

    PubMed  CAS  Google Scholar 

  • Talebi, M.G., Pope, T.R., Vogel, E.R., Neitz, M., and Dominy, N.J., Polymorphism of visual pigment genes in the muriqui (Primates, Atelidae), Mol. Ecol., 2006, vol. 15, pp. 551–558.

    PubMed  CAS  Google Scholar 

  • Tan, Y. and Li, W.H., Trichromatic vision in prosimians, Nature, 1999, vol. 402, p. 36.

    PubMed  CAS  Google Scholar 

  • Troy, J.B. and Shou, T., The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research, Prog. Retinal Eye Res., 2002, vol. 21, pp. 263–302.

    CAS  Google Scholar 

  • Umino, Y., Solessio, E., and Barlow, R.B., Speed, spatial, and temporal turning of rod and cone vision in mouse, J. Neurosci., 2008, vol. 28, no. 1, pp. 189–198.

    PubMed  CAS  Google Scholar 

  • Wang, D., Oakley, T., Mower, J., Shimmin, L.C., Yim, S., Honeycutt, R.L., Tsao, H., and Li, W.H., Molecular evolution of bat color vision genes, Mol. Biol. Evol., 2004, vol. 21, no. 2, pp. 295–302.

    PubMed  CAS  Google Scholar 

  • Wikler, K.C. and Rakic, P., Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates, J. Neurosci., 1990, vol. 10, no. 10, pp. 3390–3401.

    PubMed  CAS  Google Scholar 

  • Williams, G.A. and Jacobs, G.H., Absence of functional short-wavelength sensitive cone pigments in hamsters (Mesocricetus), J. Comp. Physiol., A, 2008, vol. 194, pp. 429–439.

    Google Scholar 

  • Williams, G.A., Calderone, J.B., and Jacobs, G.H., Photo-receptors and photopigments in subterranean rodent, the pocket gopher (Thomomys bottae), J. Comp. Physiol., A, 2005, vol. 191, pp. 125–134.

    Google Scholar 

  • Winter, Y., López, J., and von Helversen, O., Ultraviolet vision in a bat, Nature, 2003, vol. 425, pp. 612–614.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Motulski, A., and Deeb, S.S., Visual pigment gene structure and expression in human retinae, Hum. Mol. Genet., 1997, vol. 6, no. 7, pp. 981–990.

    PubMed  CAS  Google Scholar 

  • Yang, G. and Masland, R., Receptive fields and dendritic structure of directionally selective retinal ganglion cells, J. Neurosci., 1994, vol. 14, no. 9, pp. 5267–5280.

    PubMed  CAS  Google Scholar 

  • Yin, L., Smith, R.G., Sterling, P., and Brainard, D.H., Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins, J. Neurosci., 2009, vol. 29, no. 9, pp. 2706–2724.

    PubMed  CAS  Google Scholar 

  • Yokoyama, S., Molecular evolution of color vision in vertebrates, Gene, 2002, vol. 300, pp. 69–78.

    PubMed  CAS  Google Scholar 

  • Yokoyama, S. and Radlwimmer, F.B., The molecular genetics and evolution of red and green color vision in vertebrates, Genetics, 2001, vol. 158, pp. 1697–1710.

    PubMed  CAS  Google Scholar 

  • Yokoyama, S., Takenaka, N., Agnew, D.W., and Shoshani, J., Elephants and human color-blind deuteranopes have identical sets of visual pigments, Genetics, 2005, vol. 170, pp. 335–344.

    PubMed  CAS  Google Scholar 

  • Zhao, H., Rossiter, S.J., Teeling, E.C., Li, C., Cotton, J.A., and Zhang, S., The evolution of color vision in nocturnal mammals, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 22, pp. 8980–8985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Khokhlova.

Additional information

Original Russian Text © T.V. Khokhlova, 2012, published in Zhurnal Obshchei Biologii, 2012, Vol. 73, No. 6, pp. 418–434.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khokhlova, T.V. Current views on vision in mammals. Biol Bull Rev 3, 347–361 (2013). https://doi.org/10.1134/S207908641305006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908641305006X

Keywords

Navigation