Skip to main content
Log in

Coevolution of partners and integrity of symbiotic systems

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Symbioses are very beneficial models for studying the integrity of biosystems, which characterizes their structure-function orderliness and allows the partners to adequately respond to environmental changes. An analysis of various types of the plant-microbe and animal-microbe symbioses suggests that their integrity qualitatively increases during facultative and ecologically obligatory interactions of the partners, reaching its climax in the case of genetically obligatory interactions. Mathematical models enabled us to demonstrate that the functional integrity of N2-fixing legume-rhizobium symbiosis (concordance of the changes in the genotypic frequencies of the partners induced by environmental fluctuations) correlates with its ecological efficiency, which is increased by natural selection. The result is the establishment of tight regulatory feedbacks between the partners, leading to their genetic integration, which is referred to as “symbiogenome.” The genetic integrity of symbiosis determines its high evolutionary potential based on (a) the epigenetic inheritance of symbiotic characters by the host, implemented as a vertical transfer of either microsymbionts themselves or their genes and (b) interspecific altruism, which is associated with positive feedbacks between the partners and determines the ecological efficiency of mutualistic interactions. Realization of this potential leads to the deep genetic integration of initially independent partners, including their fusion into novel integral organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadjian, V., The Lichen Symbiosis, New York: Wiley, 1993.

    Google Scholar 

  • Arnold, A.E., Mamit, L.J., Gehring, C.A., Bidartondo, M.I., and Callahan, H., Interwoven Branches of the Plant and Fungal Trees of Life, New Phytol., 2010, vol. 185, pp. 874–878.

    Article  PubMed  CAS  Google Scholar 

  • Atsatt, P., Are Vascular Plants Inside-Out Lichens?, Ecology, 1988, vol. 69, pp. 17–23.

    Article  Google Scholar 

  • Berg, L.S., Nomogenesis, or Evolution, Based on the Laws, in Berg, L.S. Papers on the Theory of Evolution, Lindberg, G.U. and Zhukovskii, P.M., Eds., Leningrad: Nauka, 1977, pp. 95–338.

    Google Scholar 

  • Blagoveshchenskaya, E.Yu. and D’yakov, Yu.T., Endophytic Fungi of Cereals, Mikol. Fitopatol., 2005, vol. 39, no. 3, pp. 1–15.

    Google Scholar 

  • Bryan, J.A., Berlyn, G.P., and Gordon, J.C., Towards a New Concept of the Evolution of Symbiotic Nitrogen Fixation in the Leguminosae, Plant Soil, 1996, vol. 186, pp. 151–159.

    Article  CAS  Google Scholar 

  • Bukharin, O.V., The Persistence of Bacterial Pathogens as a Physiological Phenomenon, Vestn. Mosk. Univ., Ser. 16, 2008, no. 1, pp. 6–13.

  • Churaev, R.N., Epigenetics: Gene and the Epigenome Network in Ontogeny and Phylogeny, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 1276–1296.

    CAS  Google Scholar 

  • D’yakov, Yu.T., Ozeretskovskaya, O.L., Dzhavakhiya, V.G., and Bagirova, S.F., Obshchaya i molekulyarnaya fitopatologiya (General and Molecular Phytopathology), Moscow: Obshch. Fitopatol., 2001.

    Google Scholar 

  • Deakin, W.J. and Broughton, W.J., Symbiotic Use of Pathogenic Strategies: Rhizobial Protein Secretion Systems, Nature Rev. Microbiol., 2009, vol. 7, pp. 312–320.

    CAS  Google Scholar 

  • Dorosinskii, L.M. and Lazareva, N.M., The Specificity of Nodular Bacteria of Soybean and Lupine, Mikrobiologiya, 1968, vol. 37, no. 1, pp. 115–121.

    CAS  Google Scholar 

  • Douglas, A.E., Mycetocyte Symbiosis in Insects, Biol. Rev., 1989, vol. 64, pp. 409–434.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, A.E., Parallels and Contrasts between Symbiotic Bacteria and Bacterial-Derived Organelles: Evidence from Buchnera, the Bacterial Symbiont of Aphids, FEMS Microbiol. Ecol., 1997, vol. 24, no. 1, pp. 1–9.

    Article  CAS  Google Scholar 

  • Ferguson, B.J., Indrasumunar, A., Hayshi, S., Lin, H.M., Lin, Y.H., Reid, D.E., and Gresshoff, P.M., Molecular Analysis of Legume Nodule Development and Autoregulation, J. Integrat. Plant Biol., 2010, vol. 52, pp. 61–76.

    Article  CAS  Google Scholar 

  • Galaktionov, V.G., Immunologiya (Immunology), 3rd ed., Moscow: Akademiya, 2004.

    Google Scholar 

  • Giraud, E., Moulin, L., Vallenet, D., et al., Legume Symbioses: Absence of Nod Genes in Photosynthetic Bradyrhizobia, Science, 2007, vol. 316, pp. 1307–1312.

    Article  PubMed  Google Scholar 

  • Gorban’, A.N., Manchuk, V.T., and Petushkova, E.V., Dynamics of Correlations between Physiological Parameters during Adaptation and the Ecological-Evolutionary Principle of Multifactoriality, in Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem (Problems of Ecological Monitoring and Modeling of Ecosystems), Leningrad: Gidrometeoizdat, 1987, vol. 10, pp. 187–198.

    Google Scholar 

  • Gusteleva, L.A. and Isaev, A.S., Mikroflora nasekomykhksilofagov (Microflora of Xylophagous Insects), Novosibirsk: Nauka, 1982.

    Google Scholar 

  • Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M., and Fukatsu, T., Strict Host-Symbiont Co-Speciation and Reductive Genome Evolution in the Insect Gut Bacteria, PLoS Biology, 2006, vol. 4, pp. 1841–1851.

    Article  CAS  Google Scholar 

  • Hotopp, J.C., Clark, M.E., Oliveira, D.C., et al., Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes, Science, 2007, vol. 21, pp. 1753–1756.

    Article  Google Scholar 

  • Iordanskii, N.N., Charles Darwin and the Problem of Evolutionary Progress, Zh. Obshch. Biol., 2010, vol. 71, pp. 488–496.

    PubMed  CAS  Google Scholar 

  • Ishikawa, H., Biochemical and Molecular Aspects of Endosymbiosis in Insects, Int. Rev. Cytol., 1989, vol. 116, pp. 1–45.

    Article  PubMed  CAS  Google Scholar 

  • Janzen, D.H., When Is It Coevolution?, Evolution, 1980, vol. 34, pp. 611–612.

    Article  Google Scholar 

  • Jones, K.M., Kobayashi, H., Davies, B.W., Taga, M.E., and Walker, G.C., How Rhizobial Symbionts Invade Plants: The Sinorhizobium-Medicago Model, Nat. Rev. Microbiol., 2007, vol. 5, pp. 619–633.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, S., Hashimoto, T., Hasegawa, M., Murata, S., Ohta, S., Seki, H., and Okada, N., Close Phylogenetic Relationship between Vestimentifera (Tube Worms) and Annelida Revealed by the Amino Acid Sequence of Elongation Factor-L1α, J. Mol. Evol., 1993, vol. 37, pp. 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Korochkin, L.I., What Is Epigenetics?, Russ. J. Genet., 2006, vol. 42, pp. 1156–1164.

    Article  CAS  Google Scholar 

  • Kulaeva, O.A., Matveeva, T.V., and Lutova, L.A., Horizontal Gene Transfer from Agrobacterium to Plants, Ekol. Genet., 2006, vol. 4, no. 4, pp. 10–19.

    Google Scholar 

  • Lobie, L., Oazisy na dne okeana (Oases on the Ocean Floor), Leningrad: Gidrometeoizdat, 1990.

    Google Scholar 

  • Lobakova, E.S. and Smirnov, I.A., Experimental Lichenology, Zh. Obshch. Biol., 2008, vol. 69, no. 5, pp. 364–378.

    PubMed  CAS  Google Scholar 

  • Lutova, L.A., Provorov, N.A., Tikhodeev, O.N., Tikhonovich, I.A., Khodzhaiova, L.T., and Shishkova, S.O., Genetika razvitiya rastenii (Genetics of Plant Development), Inge-Vechtomov, S.G., Ed., St. Petersburg: Nauka, 2000.

    Google Scholar 

  • Mayr, E., Zoologicheskii vid i evolyutsiya (Zoological Species and Evolution), Moscow: Mir, 1968.

    Google Scholar 

  • Margulis, L. and Sagan, D., Acquiring Genomes. A Theory of the Origins of Species, New York: Basic Books, 2002.

    Google Scholar 

  • Meeks, J.C. and Elhai, J., Regulation of Cellular Differentiation in Filamentous Cyanobacteria in Free-Living and Plant-Associated Symbiotic Growth States, Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 1, pp. 94–121.

    Article  PubMed  CAS  Google Scholar 

  • Merezhkovskii, K.S., Teoriya dvukh plazm kak osnova simbiogenezisa, novogo ucheniya o proiskhozhdenii organizmov (The Theory of the Two Plasmas as a Basis of Symbiogenesis, a New Theory of the Origin of Organisms), Kazan: Izd. Imper. Univ., 1909.

    Google Scholar 

  • Mode, C.J., A Mathematical Model for the Co-Evolution of Obligate Parasites and Their Hosts, Evolution, 1958, vol. 12, pp. 158–165.

    Article  Google Scholar 

  • Moran, N.A., Accelerated Evolution and Muller’s Ratchet in Endosymbiotic Bacteria, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 2873–2878.

    Article  PubMed  CAS  Google Scholar 

  • Moran, N.A., Genome Evolution in Symbiotic Bacteria, ASM News, 2002, vol. 68, no. 10, pp. 499–505.

    Google Scholar 

  • Nardon, P. and Charles, H., Morphological Aspects of Symbiosis, in Symbiosis: Mechanisms and Model Systems, Seckbach, J., Ed., Dordrecht: Kluwer, 2002, pp. 13–43.

    Google Scholar 

  • Ohyama, T., Ohtake, N., Sueyoshi, K., Tewari, K., Takahashi, Y., Ito, S., Nishiwaki, T., Nagumo, Y., Ishii, S., and Sato, T., Nitrogen Fixation and Metabolism in Soybean Plants, in Nitrogen Fixation Research Program, Couto, G.N., Ed., New York: Nova Sci. Publ., 2008, pp. 15–109.

    Google Scholar 

  • Ovtsyna, A.O. and Tikhonovich, I.A., Structure, Function, and Possibility of Practical Application of Signaling Molecules that Initiate the Development of the Legume-Rhizobial Symbiosis, Ekol. Genet., 2004, vol. 2, no. 3, pp. 14–24.

    Google Scholar 

  • Ovtsyna, A.O. and Staehelin, C., Bacterial Signals Required for the Rhizobium-Legume Symbiosis, Recent Res. Develop. Microbiol., 2005, vol. 7, pp. 631–648.

    Google Scholar 

  • Panstruga, R., Establishing Compatibility between Plants and Obligate Biotrophic Pathogens, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 320–326.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, R., Nodule Function and Regulation in Gunnera-Nostoc Symbioses, Proc. Irish Royal Acad. Sci., 2002, vol. 102B, pp. 41–43.

    Article  Google Scholar 

  • Popov, I.Yu., Ortogenez protiv darvinizma (Orthogenesis against Darwinism), St. Petersburg: Izd. SPbGU, 2005.

    Google Scholar 

  • Provorov, N.A. and Tikhonovich, I.A., Ecological and Genetic Principles of Plant Breeding for Increasing the Efficiency of Interaction with Microorganisms, S.-Kh. Biol., 2003, no. 3, pp. 11–25.

  • Provorov, N.A., Molecular Basis of Symbiogenic Evolution: from Free-Living Bacteria Towards Organelles, Zh. Obshch. Biol., 2005, vol. 66, no. 5, pp. 371–388.

    PubMed  CAS  Google Scholar 

  • Provorov, N.A. and Vorobyov, N.I., Equilibrium between the “Genuine Mutualists” and “Symbiotic Cheaters” in the Bacterial Population Co-Evolving with Plants in a Facultative Symbiosis, Theor. Populat. Biol., 2008, vol. 74, no. 4, pp. 345–355.

    Article  Google Scholar 

  • Provorov, N.A. and Vorobyov, N.I., Host Plant as on Organizer of Microbial Evolution in the Beneficial Symbioses, Phytochem. Rev., 2009, vol. 8, pp. 519–534.

    Article  CAS  Google Scholar 

  • Provorov, N.A. and Vorobyov, N.I., Simulation of BacteriaPlant Coevolution in the Mutualistic Symbiosis, Russ. J. Genet., 2009, vol. 45, no. 5, pp. 507–519.

    Article  CAS  Google Scholar 

  • Provorov, N.A. and Vorobyov, N.I., Evolutionary Genetics of Plant-Microbe Symbioses, Tikhonovich, I.A., Ed., New York: NOVA Sci. Publ., 2010a.

    Google Scholar 

  • Provorov, N.A. and Vorobyov, N.I., Simulation of Evolution Implemented in the Mutualistic Symbioses towards Enhancing Their Ecological Efficiency, Functional Integrity and Genotypic Specificity, Theor. Populat. Biol., 2010b, vol. 78, no. 4, pp. 259–269.

    Article  Google Scholar 

  • Provorov, N.A. and Vorobyov, N.I., Evolution of Legume-Rhizobium Symbiosis for an Improved Ecological Efficiency and Genotypic Specificity of Partner Interactions, Russ. J. Genet., 2011, vol. 47, no. 3, pp. 369–375.

    Article  CAS  Google Scholar 

  • Rosenblueth, M. and Martinez-Romero, E., Bacterial Endophytes and Their Interactions with Hosts, Mol. Plant-Microbe Interact., 2006, vol. 19, pp. 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Rostova, N.S. and Brach, N.B., Genotypic and Environmental Correlations of Some Signs of Flax, Tr. Prikl. Bot. Genet. Selekts., 1989, vol. 125, pp. 56–64.

    Google Scholar 

  • Rumpho, M.E., Worful, J.M., Lee, J., Kannan, K., Tyler, M.S., Bhattacharya, D., Moustafa, A., and Manhart, J.R., Horizontal Gene Transfer of the Algal Nuclear Gene PsbO to the Photosynthetic Sea Slug Elysia chlorotica, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 17867–17871.

    Article  PubMed  CAS  Google Scholar 

  • Ruse, M., Limits to Our Knowledge of Evolution, in Evolutionary Biology, Vol. 32, Clegg, M.T., Hecht, M.K., and Macintryre, R.J., Eds., New York: Kluwer/Plenum Publ., 2000, pp. 3–31.

    Google Scholar 

  • Sanchez-Contreras, M., Bauer, W.D., Gao, M., Robinson, J.B., and Downie, J.A., Quorum-Sensing Regulation in Rhizobia and Its Role in Symbiotic Interactions with Legumes, Philos. Trans. R. Soc. London B, 2007, vol. 362, pp. 1149–1163.

    Article  CAS  Google Scholar 

  • Schardl, C.L., Leuchtmann, A., and Spiering, M.J., Symbioses of Grasses with Seed-Borne Fungal Endophytes, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 315–340.

    Article  PubMed  CAS  Google Scholar 

  • Schumpp, O. and Deakin, W.J., How Inefficient Rhizobia Prolong Their Existence within Nodules, Trends Plant Sci., 2010, vol. 15, pp. 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Schwemmler, W., Analysis of Possible Gene Transfer between an Insect Host and Its Bacteria-Like Endosymbionts, Int. Rev. Cytol., 1983, vol. 14(Suppl.), pp. 247–266.

    CAS  Google Scholar 

  • Shaposhnikov, G.Kh., Living Systems with a Low Degree of Integrity, Zh. Obshch. Biol., 1975, vol. 36, pp. 323–335.

    Google Scholar 

  • Schmalhausen, I.I., Organizm kak tseloe v individual’nom i istoricheskom razvitii (Organism as a Whole in the Individual and Historical Development), Moscow: Nauka, 1982.

    Google Scholar 

  • Schmalhausen, I.I., Puti i zakonomernosti evolyutsionnogo protsessa (Pathways and Patterns of the Evolutionary Process), Moscow: Nauka, 1983.

    Google Scholar 

  • Sprent, J.I., Nodulation in Legumes. Kew: Royal Botanical Gardens, Cromwell Press, 2001.

  • Sprent, J.I., Evolving Ideas of Legume Evolution and Diversity: A Taxonomic Perspective on the Occurrence of Nodulation, New Phytol., 2007, vol. 174, pp. 11–25.

    Article  PubMed  CAS  Google Scholar 

  • Steele, E.J., Lindley, R.A., and Blanden, R.V., Chto, esli Lamark byl prav? Immunogenetika i evolyutsiya (What if Lamarck Was Right? Immunogenetics and Evolution), Moscow: Mir, 2002.

    Google Scholar 

  • Tarchevskii, I.A., Signal’nye sistemy kletok rastenii (Signaling Systems of Plant Cells), Moscow: Nauka, 2002.

    Google Scholar 

  • Tikhonovich, I.A. and Provorov, N.A., Symbiogenetics of Microbe-Plant Interactions, Ekol. Genet., 2003, vol. 1, pp. 36–46.

    Google Scholar 

  • Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Symbiosis of Plants and Microorganisms: Molecular Genetics of Agricultural Systems of the Future), St. Petersburg: Izd. SPbGU, 2009.

    Google Scholar 

  • Tikhonovich, I.A. and Provorov, N.A., Epigenetics of Ecological Niches, Ekol. Genet., 2010, vol. 8, no. 4, pp. 30–38.

    Google Scholar 

  • Tikhonovich, I.A. and Provorov, N.A., Agricultural Microbiology as a Basis for Sustainable Agricultural Production: Fundamental and Applied Aspects, S.-Kh. Biol., 2011, no. 3, pp. 3–9.

  • Timofeev-Resovskii, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (A Brief Sketch of the Theory of Evolution), 2nd ed., Moscow: Nauka, 1977.

    Google Scholar 

  • Trautman, D.A. and Hinde, R., Sponge/Algal Symbioses: A Diversity of Associations, in Symbiosis: Mechanisms and Model Systems, Seckbach, J., Ed., Dordrecht: Kluwer Acad. Publ., 2002, pp. 521–537.

  • Trivers, R.L., The Evolution of Reciprocal Altruism, The Quant. Rev. Biol., 1971, vol. 46, pp. 35–57.

    Article  Google Scholar 

  • Tudzynski, P. and Scheffer, J., Claviceps purpurea: Molecular Aspects of a Unique Pathogenic Lifestyle, Molec. Plant Pathol., 2004, vol. 5, pp. 377–388.

    Article  CAS  Google Scholar 

  • Vance, K., Symbiotic Nitrogen Fixation in Legumes: Agricultural Aspects, in Rhizobiaceae. Molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae. Molecular Biology of Bacteria Interacting with Plants), Spaink, G., Kondoroshi, A., Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 541–564.

    Google Scholar 

  • van de Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., Tiricz, H., Satiat-Jeunemaitre, B., Alunni, B., Bourge, M., Kucho, K., Abe, M., Kereszt, A., Maroti, G., Uchiumi, T., Kondorosi, E., and Mergaert, P., Plant Peptides Govern Terminal Differentiation of Bacteria in Symbiosis, Science, 2010, vol. 327, no. 5969, pp. 1122–1126.

    Article  PubMed  Google Scholar 

  • Vorobyev, N.I. and Provorov, N.A., Modeling the Evolution of Legume-Rhizobial Symbiosis for Multi-Strain Competition of Bacteria for the Inoculation of Symbiotic Niches, Ekol. Genet., 2008, vol. 6, no. 4, pp. 3–11.

    Google Scholar 

  • Vorobyev, N.I. and Provorov, N.A., Modeling the Evolution of Legume-Rhizobial Symbiosis to Enhance the Functional Integration of Partners and Eco-Efficiency of Their Interactions, Ekol. Genetika, 2010, vol. 8, no. 3, pp. 16–26.

    Google Scholar 

  • Vorobyeva, E.I., Problem of Organism Integrity and Its Perspectives, Izv. Akad. Nauk, Ser. Biol., 2006, vol. 33, no. 5, pp. 427–436.

    Google Scholar 

  • Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Ideas in Biology), Moscow: Progress-Traditsiya, 1999.

    Google Scholar 

  • Wong, F.C.Y. and Meeks, J.C., Establishment of a Functional Symbiosis between the Cyanobacterium Nostoc punctiforme and the Bryophyte Anthoceros punctatus Requires Genes Involved in Nitrogen Control and Initiation of Heterocyst Differentiation, Arch. Microbiol., 2002, vol. 148, pp. 315–323.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Additional information

Original Russian Text © N.A. Provorov, N.I. Vorob’ev, 2012, published in Zhurnal Obshchei Biologii, 2012, Vol. 73, No. 1, pp. 21–36.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provorov, N.A., Vorob’ev, N.I. Coevolution of partners and integrity of symbiotic systems. Biol Bull Rev 2, 400–412 (2012). https://doi.org/10.1134/S2079086412050076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086412050076

Keywords

Navigation