Skip to main content
Log in

Longevity control in fungi and other organisms: The conception of scales

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

This review deals mainly with gerontological processes that occur on the cellular-colonial level of organization in fungi and cellular-tissular level in other organisms. Aging and antiaging mechanisms operating on these levels of organization can be considered as common for all living things. Fungi, with their tissular-like organization of the thallus, afford a broad spectrum of possibilities for solving the tasks of general gerontological import. Three basic (chronological, replicative, and cell-suicidal) and several auxiliary mechanisms of aging are distinguished, and the classification of stochastic aging factors accumulating in cells is given. It is shown that, in complex multicellular organisms, aging and antiaging mechanisms operate on the level of interactions between tissues, though the aforesaid conservative basic mechanisms underlie their actions. A preliminary generalized conception of aging—the conception of scales—is put forward, founded on the model of balanced and nonbalanced counteractions between stressful impacts and various mechanisms of aging and antiaging with a different extent of genetic preprogramming. The important contribution of mycological gerontology to broadening inferences on the nature of aging is reaffirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann, M., Stearns, S.C., and Jenal, U., Senescence in a Bacterium with Asymmetric Division, Science, 2003, vol. 300, pp. 1920–1921.

    Article  PubMed  CAS  Google Scholar 

  • Aguilaniu, H., Gustafsson, L., Rigoulet, M., and Nyström, T., Asymmetric Inheritance of Oxidatively Damaged Proteins during Cytokinesis, Science, 2003, vol. 299, pp. 1751–1753.

    Article  PubMed  CAS  Google Scholar 

  • Akashi, T., Kanbe, T., and Tanaka, K., The Role of the Cytoskeleton in the Polarized Growth of the Germ Tube in Candida albicans, Microbiology, 1994, vol. 140, pp. 271–280.

    Article  PubMed  Google Scholar 

  • Andreyev, A.Yu., Kushnareva, Yu.E., and Starkov, A.A., Mitochondrial Metabolism of Reactive Oxygen Species, Biochemistry (Mosc.), 2005, vol. 70, pp. 200–214.

    Article  CAS  Google Scholar 

  • Ashrafi, K., Sinclair, D., Gordon, J.I., and Guarente, L., Passage through Stationary Phase Advances Replicative Aging in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 9100–9105.

    Article  PubMed  CAS  Google Scholar 

  • Barja, G., Mammalian and Bird Aging, Oxygen Radicals, and Restricted Feeding, in Topics in Current Genetics: Model Systems in Aging, Nyström, T. and Osiewacz, H.D., Eds., Berlin: Springer-Verlag, 2004, pp. 173–185.

    Google Scholar 

  • Barros, M.H., Bandy, B., Tahara, E.B., and Kowaltowski, A.J., Higher Respiratory Activity Decreases Mitochondrial Reactive Oxygen Release and Increases Life Span in Saccharomyces cerevisiae, J. Biol. Chem., 2004, vol. 279, pp. 49883–49888.

    Article  PubMed  CAS  Google Scholar 

  • Begel, O., Boulay, J., Albert, B., Dufour, E., and Sainsard-Chanet, A., Mitochondrial Group II Introns, Cytochrome c Oxidase, and Senescence in Podospora anserina, Mol. Cell Biol., 1999, vol. 19, pp. 4093–4100.

    PubMed  CAS  Google Scholar 

  • Bitterman, K.J., Medvedik, O., and Sinclair, D.A., Longevity Regulation in Saccharomyces cerevisiae: Linking Metabolism, Genome Stability, and Heterochromatin, Microbiol. Mol. Biol. Rev., 2003, vol. 67, pp. 376–399.

    Article  PubMed  CAS  Google Scholar 

  • Bockelmann, B. and Esser, K., Plasmids of Mitochondrial Origin in Senescent Mycelia of Podospora curvicolla, Curr. Genet., 1986, vol. 10, pp. 803–810.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov, Yu.F. and Kolomiets, O.L., Sinaptonemnyi kompleks—indikator dinamiki meioza i izmenchivosti khromosom (Synaptonemal Complex—An Indicator of the Dynamics of Meiosis and Chromosome Variability), Moscow: Tovar. Nauch. Izd. KMK, 2007.

    Google Scholar 

  • Boiko, A.G., Differentiation of Radial Glial Cells into Astrocytes—A Plausible Mechanism of Aging of Mammals, Zh. Obshch. Biol., 2007, vol. 68, pp. 35–51.

    PubMed  CAS  Google Scholar 

  • Borghouts, C., Kimpel, E., and Osiewacz, H.D., Mitochondrial DNA Rearrangements of Podospora anserina Are uder the Control of the Nuclear Gene Grisea, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 10768–10773.

    Article  PubMed  CAS  Google Scholar 

  • Borodulin, V.B., Biochemical Basics of a Unified Theory of Aging. Part I. The Main Provisions, Usp. Gerontol., 2008, vol. 21, pp. 535–545.

    CAS  Google Scholar 

  • Butow, R.A. and Avadhani, N.G., Mitochondrial Signaling: The Retrograde Response, Mol. Cell, 2004, vol. 14, pp. 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Cavalheiro, R.A., Fortes, F., Borecký, J., Faustinoni, V.C., Schreiber, A.Z., and Vercesi, A.E., Respiration, Oxidative Phosphorylation, and Uncoupling Protein in Candida albicans, Braz. J. Med. Biol. Res., 2004, vol. 37, pp. 1455–1461.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J., and Ames, B.N., Oxidative DNA Damage and Senescence of Human Diploid Fibroblast Cells, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 4337–4341.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, C.L., Gao, T.Q., Wang, Z., and Li, D.D., Role of Insulin/Insulin-Like Growth Factor 1 Signaling Pathway in Longevity, World J. Gastroenterol., 2005, vol. 11, pp. 1891–1895.

    PubMed  CAS  Google Scholar 

  • Chichinadze, K.N. and Tkemaladze, Dzh.V., Centrosomal Hypothesis of Cellular Aging and Differentiation, Usp. Gerontol., 2008, vol. 21, pp. 367–371.

    CAS  Google Scholar 

  • Coenen, A., Croft, J.H., Slakhorst, M., Debets, F., and Hoekstra, R., Mitochondrial Inheritance in Aspergillus nidulans, Genet. Res., 1996, vol. 67, pp. 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Corral-Debrinski, M., Horton, T., Lott, M.T., Shoffner, J.M., Beal, M.F., and Wallace, D.C., Mitochondrial DNA Deletions in Human Brain: Regional Variability and Increase with Advanced Age, Nat. Genet., 1992, vol. 2, pp. 324–329.

    Article  PubMed  CAS  Google Scholar 

  • Crevecoeur, G.U., A System Approach Modeling of the Three-Stage Non-Linear Kinetics in Biological Ageing, Mech. Ageing Dev., 2001, vol. 122, pp. 271–290.

    Article  PubMed  CAS  Google Scholar 

  • Criscuolo, F., Gonzalez-Barroso Mdel, M., Le Maho, Y., Ricquier, D., and Bouillaud, F., Avian Uncoupling Protein Expressed in Yeast Mitochondria Prevents Endogenous Free Radical Damage, Proc. Biol. Sci., 2005, vol. 272, pp. 803–810.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, D.J., Belcour, L., and Grandchamp, C., Mitochondrial DNA from Podospora anserina. II. Properties of Mutant DNA and Multimeric Circular DNA from Senescent Cultures, Mol. Gen. Genet., 1979, vol. 171, pp. 239–250.

    Article  PubMed  CAS  Google Scholar 

  • Densnues, B., Cuny, C., Grégori, G., Dukan, S., Aguilaniu, H., and Nyström, T., Differential Oxidative Damage and Expression of Stress Defense Regulons in Culturable and Non-Culturable Escherichia coli Cells, EMBO Rep., 2003, vol. 4, pp. 400–404.

    Article  CAS  Google Scholar 

  • Dilova, I., Chen, C.Y., and Powers, T., Mks1 in Concert with TOR Signaling Negatively Regulates RTG Target Gene Expression in S. cerevisiae, Curr. Biol., 2002, vol. 12, pp. 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Druzhyna, N.M., Wilson, G.L., and LeDoux, S.P., Mitochondrial DNA Repair in Aging and Disease, Mech. Ageing Dev., 2008, vol. 129, pp. 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Dufour, E., Boulay, J., Rincheval, V., and Sainsard-Chanet, A., A Causal Link between Respiration and Senescence in Podospora anserina, Proc. Natl. Acad. Sci. USA., 2000, vol. 97, pp. 4138–4143.

    Article  PubMed  CAS  Google Scholar 

  • Dukan, S. and Nyström, T., Bacterial Senescence: Stasis Results in Increased and Differential Oxidation of Cytoplasmic Proteins Leading to Developmental Induction of the Heat Shock Regulon, Genes Dev., 1998, vol. 12, pp. 3431–3441.

    Article  PubMed  CAS  Google Scholar 

  • Dukan, S. and Nyström, T., Oxidative Stress Defense and Deterioration of Growth-Arrested Escherichia coli Cells, J. Biol. Chem., 1999, vol. 274, pp. 26027–26032.

    Article  PubMed  CAS  Google Scholar 

  • Dukan, S., Farewell, A., Ballesteros, M., Taddei, F., Radman, M., and Nyström, T., Protein Oxidation in Response to Increased Transcriptional or Translational Errors, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 5746–5749.

    Article  PubMed  CAS  Google Scholar 

  • D’yakov, Yu.T. and Dolgova, A.V., Vegetativnaya nesovmestimost’ u fitopatogennykh gribov (Vegetative Incompatibility in Pathogenic Fungi), Moscow: PP Patent, 1995.

    Google Scholar 

  • Easlon, E., Tsang, F., Skinner, C., Wang, C., and Lin, S.J., The Malate-Aspartate NADH Shuttle Components Are Novel Metabolic Longevity Regulators Required for Calorie Restriction-Mediated Life Span Extension in Yeast, Genes Dev., 2008, vol. 22, pp. 931–944.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, T.J., Breeding Strategies in Agaricus bisporus, Mush. Sci., 1979, vol. 10, pp. 73–81.

    Google Scholar 

  • Erjavec, N. and Nyström, T., Sir2p-Dependent Protein Segregation Gives Rise to a Superior Reactive Oxygen Species Management in the Progeny of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 10877–10881.

    Article  PubMed  CAS  Google Scholar 

  • Erjavec, N., Cvijovic, M., Klipp, E., and Nyström, T., Selective Benefits of Damage Partitioning in Unicellular Systems and Its Effects on Aging, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 18764–18769.

    Article  PubMed  CAS  Google Scholar 

  • Erjavec, N., Larsson, L., Grantham, J., and Nyström, T., Accelerated Aging and Failure to Segregate Damaged Proteins in Sir2 Mutants Can Be Suppressed by Overproducing the Protein Aggregation-Remodeling Factor Hsp104p, Genes Dev., 2007, vol. 21, pp. 2410–2421.

    Article  PubMed  CAS  Google Scholar 

  • Evans, H.J., Nuclear Behavior in the Cultivated Mushroom, Chromosoma, 1959, vol. 10, pp. 115–135.

    Article  PubMed  CAS  Google Scholar 

  • Fox, A.N. and Kennell, J.C., Association between Variant Plasmid Formation and Senescence in Retroplasmid-Containing Strains of Neurospora spp, Curr. Genet., 2001, vol. 39, pp. 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson, A. and Nyström, T., Conditional and Replicative Senescence in Escherichia coli, Curr. Opin. Microbiol., 2006, vol. 9, pp. 612–618.

    Article  PubMed  CAS  Google Scholar 

  • Gavrilov, L.A. and Gavrilova, N.S., Evolutionary Theories of Aging and Longevity, Sci. World J., 2002, vol. 2, pp. 339–356.

    Article  Google Scholar 

  • Giannattasio, S., Liu, Z., Thornton, J., and Butow, R.A., Retrograde Response to Mitochondrial Dysfunction Is Separable from TOR1/2 Regulation of Retrograde Gene Expression, J. Biol. Chem., 2005, vol. 280, pp. 42528–42535.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith, T.C., The Evolution of Aging—How New Theories Will Change the Future of Medicine, Crownsville: Azinet Press, 2006.

    Google Scholar 

  • Goldsmith, T.C., Aging as an Evolved Characteristic—Weismann’s Theory Reconsidered, Med. Hypotheses, 2004, vol. 62, pp. 304–308.

    Article  PubMed  Google Scholar 

  • Gonczy, P., Mechanisms of Asymmetric Cell Division: Flies and Worms Pave the Way, Nat. Rev. Mol. Cell Biol., 2008, vol. 9, pp. 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Gordeeva, A.V., Labas, Yu.A., and Zvyagilskaya, R.A., Apoptosis in Unicellular Organisms: Mechanisms and Evolution, Biokhimiya, 2004, vol. 69, pp. 1055–1066.

    Article  CAS  Google Scholar 

  • Gredilla, R., Sanz, A., Lopez-Torres, M., and Barja, G., Caloric Restriction Decreases Mitochondrial Free Radical Generation at Complex I and Lowers Oxidative Damage to Mitochondrial DNA in the Rat Heart, FASEB J., 2001, vol. 15, pp. 1589–1591.

    PubMed  CAS  Google Scholar 

  • Griffiths, A.J.F., Mitochondrial Inheritance in Filamentous Fungi, J. Genet., 1996, vol. 75, pp. 403–414.

    Article  CAS  Google Scholar 

  • Hamann, A., Brust, D., and Osiewacz, H.D., Deletion of Putative Apoptosis Factors Leads to Lifespan Extension in the Fungal Ageing Model Podospora anserina, Mol. Microbiol., 2007, vol. 65, pp. 948–958.

    Article  PubMed  CAS  Google Scholar 

  • Harman, D., Free Radical Theory of Aging: An Update: Increasing the Functional Life Span, Ann. N.Y. Acad. Sci., 2006, vol. 1067, pp. 10–21.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, M., Sugiyama, S., Hattori, K., Takasawa, M., and Ozawa, T., Age-Associated Damage in Mitochondrial DNA in Human Hearts, Mol. Cell. Biochem., 1993, vol. 119, pp. 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Helmerhorst, E.J., Murphy, M.P., Troxler, R.F., and Oppenheim, F.G., Characterization of the Mitochondrial Respiratory Pathways in Candida albicans, Biochim. Biophys. Acta, 2002, vol. 1556, pp. 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, R.F., Evolutionary Origin and Consequences of Uniparental Mitochondrial Inheritance, Hum. Reprod., 2000, vol. 15, pp. 102–111.

    PubMed  Google Scholar 

  • Holliday, R., Aging Is no Longer an Unsolved Problem in Biology, Ann. N.Y. Acad. Sci., 2006, vol. 1067, pp. 1–9.

    Article  PubMed  Google Scholar 

  • Jamet-Vierny, C., Boulay, J., and Briand, J.F., Intramolecular Cross-Overs Generate Deleted Mitochondrial DNA Molecules in Podospora anserina, Curr. Genet., 1997, vol. 31, pp. 162–170.

    Article  PubMed  CAS  Google Scholar 

  • Jamet-Vierny, C., Rossignol, M., Haedens, V., and Silar, P., What Triggers Senescence in Podospora anserina?, Fungal Genet. Biol., 1999, vol. 27, pp. 26–35.

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski, S.M., Aging and Longevity Genes, Acta Biochim. Pol., 2000, vol. 47, pp. 269–279.

    PubMed  CAS  Google Scholar 

  • Jazwinski, S.M., The Genetics of Aging in the Yeast Saccharomyces cerevisiae, Genetics, 1993, vol. 91, pp. 35–51.

    CAS  Google Scholar 

  • Jazwinski, S.M., Yeast Replicative Life Span—The Mitochondrial Connection, FEMS Yeast Res., 2004b, vol. 5, pp. 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski, S.M.,Mitochondria, Metabolism, and Aging in Yeast, in Topics in Current Genetics: Model Systems in Aging, Nyström, T. and Osiewacz, H.D., Eds., Berlin: Springer-Verlag, 2004a, pp. 39–55.

  • Joseph-Horne, T., Hollomon, D.W., and Wood, P.M., Fungal Respiration: A Fusion of Standard and Alternative Components, Biochim. Biophys. Acta, 2001, vol. 1504, pp. 179–195.

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein, M., Burtner, C.R., and Kennedy, B.K., Recent Developments in Yeast Aging, PLoS Genet., 2007, vol. 3, pp. 655–660.

    Article  CAS  Google Scholar 

  • Khavinson, V.Kh. and Anisimov, V.N., 35-Year Experience of Investigation of Peptide Regulation of Aging, Usp. Gerontol., 2009, vol. 22, pp. 11–23.

    Google Scholar 

  • Kirchman, P.A., Kim, S., Lai, C.Y., and Jazwinski, S.M., Interorganelle Signaling Is a Determinant of Longevity in Saccharomyces cerevisiae, Genetics, 1999, vol. 152, pp. 179–190.

    PubMed  CAS  Google Scholar 

  • Kirkwood, T.B. and Rose, M.R., Evolution of Senescence: Late Survival Sacrificed for Reproduction, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1991, vol. 332, pp. 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood, T.B., Evolution of Ageing, Mech. Ageing Dev., 2002, vol. 123, pp. 737–745.

    Article  PubMed  Google Scholar 

  • Kirkwood, T.B., Evolution of Ageing, Nature, 1977, vol. 270, pp. 301–304.

    Article  PubMed  CAS  Google Scholar 

  • Kirova, Yu.I., and Borodulin, V.B., Biochemical Basics of a Unified Theory of Aging. Part II. Aerobic Status of the Cell, Resistance to Hypoxia, and Proliferation, Usp. Gerontol., 2009, vol. 22, pp. 74–83.

    Google Scholar 

  • Kishi, S., Slack, B.E., Uchiyama, J., and Zhdanova, I.V., Zebrafish as a Genetic Model in Biological and Behavioral Gerontology: Where Development Meets Aging in Vertebrates—A Mini-Review, Gerontology, 2009, vol. 55, pp. 430–441.

    Article  PubMed  CAS  Google Scholar 

  • Koll, F., Boulay, J., Belcour, L., and D’Aubenton-Carafa, Y., Contribution of Ultra-Short Invasive Elements to the Evolution of the Mitochondrial Genome in the Genus Podospora, Nucleic Acids Rev., 1996, vol. 24, pp. 1734–1741.

    Article  CAS  Google Scholar 

  • Koll, F., Sidoti, C., Rincheval, V., and Lecellier, G., Mitochondrial Membrane Potential and Ageing in Podospora anserina, Mech. Ageing Dev., 2001, vol. 122, pp. 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Komeili, A., Wedaman, K.P., O’shea E.K., and Powers T., Mechanism of Metabolic Control. Target of Rapamycin Signaling Links Nitrogen Quality to the Activity of the Rtg1 and Rtg3 Transcription Factors, J. Cell Biol., 2000, vol. 151, pp. 863–878.

    Article  PubMed  CAS  Google Scholar 

  • Krammer, C., Schätzl, H.M., and Vorberg, I., Prion-Like Propagation of Cytosolic Protein Aggregates, Prion, 2009, vol. 3, pp. 206–212.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C.Y., Jaruga, E., Borghouts, C., and Jazwinski, S.M., A Mutation in the ATP2 Gene Abrogates the Age Asymmetry Between Mother and Daughter Cells of the Yeast Saccharomyces Cerevisiae, Genetics, 2002, vol. 162, pp. 73–87.

    PubMed  CAS  Google Scholar 

  • Lambowitz, A.M., Sabourin, J.R., Bertrand, S., Nickels, R., and McIntosh, L., Immunological Identifi Cation of the Alternative Oxidase of Neurospora Crassa Mitochondria, Mol. Cell. Biol., 1989, vol. 9, pp. 1362–1364.

    PubMed  CAS  Google Scholar 

  • Ledesma, A., de Lacoba, M.G., and Rial, E., The Mitochondrial Uncoupling Proteins, Genome Biol, 2002, vol. 3, p. 9.

    Article  Google Scholar 

  • Lee, S.S., Lee, R.Y., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G., A Systematic RNAi Screen Identifies a Critical Role for Mitochondria in C. elegans Longevity, Nat. Genet., 2003, vol. 33, pp. 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Leonhard, K. and Nurse, P., Ste20/GCK Kinase Nak1/Orb3 Polarizes the Actin Cytoskeleton in Fission Yeast during the Cell Cycle, J. Cell Sci., 2005, vol. 118, pp. 1033–1044.

    Article  PubMed  CAS  Google Scholar 

  • Liao, X. and Butow, R.A., RTG1 and RTG2: Two Yeast Genes Required for a Novel Path of Communication from Mitochondria to the Nucleus, Cell, 1993, vol. 72, pp. 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Liao, X., Small, W.C., Srere, P.A., and Butow, R.A., Intramitochondrial Functions Regulate Nonmitochondrial Citrate Synthase (CIT2) Expression in Saccharomyces cerevisiae, Mol. Cell Biol., 1991, vol. 11, pp. 38–46.

    PubMed  CAS  Google Scholar 

  • Lichten, M., Meiotic Chromatin: The Substrate for Recombination Initiation, in Genome Dynamics and Stability (3). Recombination and Meiosis, Egel, R. and Lankenau, D.H., Eds., Berlin: Springer-Verlag, 2008, pp. 166–193.

    Google Scholar 

  • Lindner, A.B., Madden, R., Demarez, A., Stewart, E.J., and Taddei, F., Asymmetric Segregation of Protein Aggregates Is Associated with Cellular Aging and Rejuvenation, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 3076–3081.

    Article  PubMed  CAS  Google Scholar 

  • Linnane, A.W., Marzuki, S., Ozawa, T., and Tanaka, M., Mitochondrial DNA Mutations as an Important Contributor to Ageing and Degenerative Diseases, Lancet, 1989, vol. 1, pp. 642–645.

    Article  PubMed  CAS  Google Scholar 

  • Liu, V.W., Zhang, C., and Nagley, P., Mutations in Mitochondrial DNA Accumulate Differentially in Three Different Human Tissues during Ageing, Nucleic Acid Res., 1998, vol. 26, pp. 1268–1275.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Torres, M. and Barja, G., Lowered Methionine Ingestion as Responsible for the Decrease in Rodent Mitochondrial Oxidative Stress in Protein and Dietary Restriction: Possible Implications for Humans, Biochim. Biophys. Acta, 2008, vol. 1780, pp. 1337–1347.

    Article  PubMed  CAS  Google Scholar 

  • Lorin, S., Dufour, E., and Sainsard-Chanet, A., Mitochondrial Metabolism and Aging in the Filamentous Fungus Podospora anserina, Biochim. Biophys. Acta, 2006, vol. 1757, pp. 604–610.

    Article  PubMed  CAS  Google Scholar 

  • Lu, B.C., Gallo, N., and Kües, U., White-Cap Mutants and Meiotic Apoptosis in the Basidiomycete Coprinus cinereus, Fungal Genet. Biol., 2003, vol. 39, pp. 82–93.

    Article  PubMed  CAS  Google Scholar 

  • Lu, B.C., Programmed Cell Death in Fungi, in The Mycota. I: Growth, Differentiation and Sexuality, Kues, U. and Fischer, R., Eds., Berlin: Springer-Verlag, 2006, pp. 167–187.

    Chapter  Google Scholar 

  • Maas, M.F., Hoekstra, R.F., and Debets, A.J., A Mitochondrial Mutator Plasmid that Causes Senescence under Dietary Restricted Conditions, BMC Genet., 2007a, vol. 8, pp. 9–10.

    Article  PubMed  CAS  Google Scholar 

  • Maas, M.F., Krause, F., Dencher, N.A., and Sainsard-Chanet, A.J., Respiratory Complexes III and IV Are not Essential for the Assembly/Stability of Complex I in Fungi, Mol. Biol., 2009, vol. 387, pp. 259–269.

    Article  CAS  Google Scholar 

  • Maas, M.F., Sellem, C.H., Hoekstra, R.F., Debets, A.J., and Sainsard-Chanet, A., Integration of a PAL2-1 Homologous Mitochondrial Plasmid Associated with Life Span Extension in Podospora anserina, Fungal Genet. Biol., 2007b, vol. 44, pp. 659–671.

    Article  PubMed  CAS  Google Scholar 

  • Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., and Fröhlich, K.-U., Apoptosis in Yeast, Curr. Opin. Microbiol., 2004, vol. 7, pp. 655–660.

    Article  PubMed  CAS  Google Scholar 

  • Mair, W., Piper, M.D., and Partridge, L., Calories Do not Explain Extension of Life Span by Dietary Restriction in Drosophila, PLoS Biol., 2005, vol. 3, pp. 1305–1311.

    Article  CAS  Google Scholar 

  • Makrushin, A.V., What Plant Physiology Can Give to Understanding the Nature of Aging and Carcinogenesis, Usp. Gerontol., 2008, vol. 21, pp. 195–197.

    CAS  Google Scholar 

  • Martínez, D.E., Mortality Patterns Suggest Lack of Senescence in Hydra, Exp. Gerontol., 1998, vol. 33, pp. 217–225.

    Article  PubMed  Google Scholar 

  • Masoro, E.J., Caloric Restriction and Aging: Controversial Issues, J. Gerontol. Biol. Sci., 2006a, vol. 61A, pp. 14–19.

    Article  CAS  Google Scholar 

  • Masoro, E.J., Dietary Restriction, Exp. Gerontol., 1995, vol. 30, pp. 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Masoro, E.J., Overview of Caloric Restriction and Ageing, Mech. Ageing Dev., 2005, vol. 126, pp. 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Masoro, E.J., Role of Hormesis in Life Extension by Caloric Restriction, Dose Response, 2006b, vol. 5, pp. 163–173.

    Article  PubMed  Google Scholar 

  • Matrosova, E.V., Mazheika, I.S., Kudryavtseva, O.A., and Kamzolkina, O.V., Morphogenesis and Ultrastructure of Basidiomycetes Agaricus and Pleurotus Mitochondria, Tsitologiia, 2009, vol. 51, pp. 490–499.

    PubMed  CAS  Google Scholar 

  • McMurray, M.A. and Gottschling, D.E., Aging and Genetic Instability in Yeast, Curr. Opin. Microbiol., 2004, vol. 7, pp. 673–679.

    Article  PubMed  CAS  Google Scholar 

  • Meadows, J.C. and Millar, J., Latrunculin A Delays Anaphase Onset in Fission Yeast by Disrupting an Ase1-Independent Pathway Controlling Mitotic Spindle Stability, Mol. Biol. Cell, 2008, vol. 19, pp. 3713–3723.

    Article  PubMed  CAS  Google Scholar 

  • Medvedev, Zh.A., Biosintez belkov i problemy ontogeneza (Biosynthesis of Proteins and Problems of Ontogeny), Moscow: Medgiz, 1963.

    Google Scholar 

  • Meissner, C., Mutations of Mitochondrial DNA—Cause or Consequence of the Ageing Process?, Z. Gerontol. Geriatr., 2007, vol. 40, pp. 325–333.

    Article  PubMed  CAS  Google Scholar 

  • Moskalev, A.A., New Ideas about the Evolutionary Nature of Aging, http://www.scienceagainstaging.com/publico/pub-lico-01.html

  • Neiman, M. and Taylor, D.R., The Causes of Mutation Accumulation in Mitochondrial Genomes, Proc. Biol. Sci., 2009, vol. 276, pp. 1201–1209.

    Article  PubMed  CAS  Google Scholar 

  • Nyström, T. and Osiewacz, H.D., Reducing Mitochondrial Fission Results in Increased Life Span and Fitness of Two Fungal Ageing Models, Nat. Cell Biol., 2007, vol. 9, pp. 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Nyström, T., Conditional Senescence in Prokaryotes, in Topics in Current Genetics: Model Systems in Aging

  • Nyström, T. and Osiewacz, H.D., Eds., Berlin: Springer-Verlag, 2004, pp. 1–13.

  • Olovnikov, A.M., Principle of Marginotomy in Template Synthesis of Polynucleotides, Dokl. Akad. Nauk SSSR, 1971, vol. 201, pp. 1496–1499.

    PubMed  CAS  Google Scholar 

  • Orgel, L.E., Ageing of Clones of Mammalian Cells, Nature, 1973, vol. 243, pp. 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Osiewacz, H.D. and Hamann, A., DNA Reorganization and Biological Aging. A Review, Biochemistry (Mosc.), 1997, vol. 62, pp. 1275–1284.

    CAS  Google Scholar 

  • Osiewacz, H.D. and Hamann, A., Senescence and Longevity, in The Mycota. I: Growth, Differentiation and Sexuality, Kües, U. and Fischer, R, Eds., Berlin: Springer-Verlag, 2006, pp. 189–200.

    Chapter  Google Scholar 

  • Osiewacz, H.D. and Scheckhuber, C.Q., Impact of ROS on Ageing of Two Fungal Model Systems: Saccharomyces cerevisiae and Podospora anserina, Free Rad. Res., 2006, vol. 40, pp. 1350–1358.

    Article  CAS  Google Scholar 

  • Osiewacz, H.D., Aging and Mitochondrial Dysfunction in the Filamentous Fungus Podospora anserina, in Topics in Current Genetics: Model Systems in Aging, Nyström, T. and Osiewacz, H.D., Eds., Berlin: Springer-Verlag, 2004, pp. 17–31.

    Google Scholar 

  • Pamplona, R., Barja, G., and Portero-Otin, M., Membrane Fatty Acid Unsaturation, Protection against Oxidative Stress, and Maximum Life Span: a Homeoviscous Longevity Adaptation?, Ann. N.Y. Acad. Sci., 2002, vol. 959, pp. 475–490.

    Article  PubMed  CAS  Google Scholar 

  • Parikh, V.S., Morgan, M.M., Scott, R., Clements, L.S., and Butow, R.A., The Mitochondrial Genotype Can Influence Nuclear Gene Expression in Yeast, Science, 1987, vol. 235, pp. 576–580.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, L. and Barton, N.H., Optimality, Mutation and the Evolution of Ageing, Nature, 1993, vol. 362, pp. 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Passos, J.F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., Wappler, I., Birket, M.J., Harold, G., Schaeuble, K., Birch-Machin, M.A., Kirkwood, T.B.L., and von Zglinicki, T., Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence, PLoS Biol., 2007, vol. 5, pp. 1138–1151.

    Article  CAS  Google Scholar 

  • Pereira, G., Tanaka, T.U., Nasmyth, K., and Schiebel, E., Modes of Spindle Pole Body Inheritance and Segregation of the Bfa1p-Bub2p Checkpoint Protein Complex, EMBO J., 2001, vol. 20, pp. 6359–6370.

    Article  PubMed  CAS  Google Scholar 

  • Potapenko, A.I. and Akif’ev, A.P., In the Search for the Program and an Initial Substrate of Aging, Usp. Gerontol., 1999, vol. 3, pp. 68–80.

    Google Scholar 

  • Powers, T., Dilova, I., Chen, C.Y., and Wedaman, K., Yeast TOR Signaling: a Mechanism for Metabolic Regulation, Curr. Top Microbiol. Immunol., 2004, vol. 279, pp. 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Ramsdale, M., Fungal Cell Death, in The Mycota. XIII: Fungal Genomics, Brown, A.J.P., Ed., Berlin: Springer-Verlag, 2006, pp. 113–146.

    Chapter  Google Scholar 

  • Roegiers, F. and Jan, Y.N., Asymmetric Cell Division, Curr. Opin. Cell Biol., 2004, vol. 16, pp. 195–205.

    Article  PubMed  CAS  Google Scholar 

  • Rohde, J., Heitman, J., and Cardenas, M.E., The TOR Kinases Link Nutrient Sensing to Cell Growth, J. Biol. Chem., 2001, vol. 276, pp. 9583–9586.

    Article  PubMed  CAS  Google Scholar 

  • Rujano, M.A., Bosveld, F., Salomons, F.A., Dijk, F., van Waarde, M.A., van der Want, J.J., de Vos, R.A., Brunt, E.R., Sibon, O.C., and Kampinga, H.H., Polarised Asymmetric Inheritance of Accumulated Protein Damage in Higher Eukaryotes, PLoS Biol., 2006, vol. 4, pp. 2325–2335.

    Article  CAS  Google Scholar 

  • Sahakian, J.A., Szweda, L.I., Friguet, B., Kitani, K., and Levine, R.L., Aging of the Liver: Proteolysis of Oxidatively Modified Glutamine Synthetase, Arch. Biochem. Biophys., 1995, vol. 318, pp. 411–417.

    Article  PubMed  CAS  Google Scholar 

  • Saupe, S.J., Clavé, C., and Bégueret, J., Vegetative Incompatibility in Filamentous Fungi: Podospora and Neurospora Provide Some Clues, Curr. Opin. Microbiol., 2000, vol. 3, pp. 608–612.

    Article  PubMed  CAS  Google Scholar 

  • Scheckhuber, C.Q., Erjavec, N., Tinazli, A., Hamann, A., Nyström, T., and Osiewacz, H.D., Reducing Mitochondrial Fission Results in Increased Life Span and Fitness of Two Fungal Ageing Models, Nat. Cell Biol., 2007, vol. 9, pp. 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Sekito, T., Liu, Z., Thornton, J., and Butow, R.A., RTG-Dependent Mitochondria-to-Nucleus Signaling Is Regulated by MKS1 and Is Linked to Formation of Yeast Prion [URE3], Mol. Biol. Cell, 2002, vol. 13, pp. 795–804.

    Article  PubMed  CAS  Google Scholar 

  • Sekito, T., Thornton, J., and Butow, R.A., Mitochondrial-Nuclear Signaling Is Regulated by the Subcellular Localization of the Transcription Factors Rtg1p and Rtg3p, Mol. Biol. Cell, 2000, vol. 11, pp. 2103–2115.

    PubMed  CAS  Google Scholar 

  • Sellem, C.H., Bovier, E., Lorin, S., and Sainsard-Chanet, A., Mutations in Two Zinc-Cluster Proteins Activate Alternative Respiratory and Gluconeogenic Pathways and Restore Senescence in Long-Lived Respiratory Mutants of Podospora anserina, Genetics, 2009, vol. 182, pp. 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Sellem, C.H., Lecellier, G., and Belcour, L., Transposition of a Group II Intron, Nature, 1993, vol. 366, pp. 176–178.

    Article  PubMed  CAS  Google Scholar 

  • Sellem, C.H., Marsy, S., Boivin, A., Lemaire, C., and Sainsard-Chanet, A., A Mutation in the Gene Encoding Cytochrome c1 Leads to a Decreased ROS Content and to a Long-Lived Phenotype in the Filamentous Fungus Podospora anserina, Fungal Genet. Biol., 2007, vol. 44, pp. 648–658.

    Article  PubMed  CAS  Google Scholar 

  • Severin, F.F. and Skulachev, V.P., Programmed Cell Death as a Target of Fighting with Aging of Organism, Usp. Gerontol., 2009, vol. 22, pp. 37–48.

    CAS  Google Scholar 

  • Shanley, D.P. and Kirkwood, T.B., Caloric Restriction Does not Enhance Longevity in All Species and Is Unlikely to Do so in Humans, Biogerontology, 2006, vol. 7, pp. 165–168.

    Article  PubMed  Google Scholar 

  • Silar, P., Koll, F., and Rossignol, M., Cytosolic Ribosomal Mutations that Abolish Accumulation of Circular Intron in the Mitochondria without Preventing Senescence of Podospora anserina, Genetics, 1997, vol. 145, pp. 697–705.

    PubMed  CAS  Google Scholar 

  • Silliker, M.E., Liotta, M.R., and Cummings, D.J., Elimination of Mitochondrial Mutations by Sexual Reproduction: Two Podospora anserina Mitochondrial Mutants Yield Only Wild-Type Progeny when Mated, Curr. Genet., 1996, vol. 30, pp. 318–324.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, D.A. and Guarente, L., Extrachromosomal RDNA Circles—A Cause of Aging in Yeast, Cell, 1997, vol. 91, pp. 1033–1042.

    Article  PubMed  CAS  Google Scholar 

  • Skulachev, V.P., Aging and the Programmed Death Phenomena, in Topics in Current Genetics: Model Systems in Aging, Nyström, T. and Osiewacz, H.D., Eds., Berlin: Springer-Verlag, 2004, pp. 191–226.

    Google Scholar 

  • Smeets, M.F. and Segal, M., Spindle Polarity in S. cerevisiae: MEN Can Tell, Cell Cycle, 2002, vol. 1, pp. 308–311.

    Article  PubMed  CAS  Google Scholar 

  • Sohal, R.S. and Brunk, U.T., Lipofuscin as an Indicator of Oxidative Stress and Aging, Adv. Exp. Med. Biol., 1989, vol. 266, pp. 17–29.

    PubMed  CAS  Google Scholar 

  • Sohal, R.S. and Weindruch, R., Oxidative Stress, Caloric Restriction, and Aging, Science, 1996, vol. 273, pp. 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Spradling, A.C. and Zheng, Y., The Mother of All Stem Cells?, Science, 2007, vol. 315, pp. 469–470.

    Article  PubMed  CAS  Google Scholar 

  • Sreekumar, R., Unnikrishnan, J., Fu, A., Nygren, J., Short, K.R., Schimke, J., Barazzoni, R., and Nair, K.S., Effects of Caloric Restriction on Mitochondrial Function and Gene Transcripts in Rat Muscle, Am. J. Physiol. Endocrinol. Metab., 2002, vol. 283, pp. 38–43.

    Google Scholar 

  • Stadtman, E.R., Protein Oxidation and Aging, Science, 1992, vol. 257, pp. 1220–1224.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, U., Lemke, P.A., Tudzynski, P., Kuck, U., and Esser, K., Evidence for Plasmid Like DNA in a Filamentous Fungus, the Ascomycete Podospora anserina, Mol. Gen. Genet., 1978, vol. 162, pp. 341–343.

    Article  PubMed  CAS  Google Scholar 

  • Starkov, A.A., Fiskum, G., Chinopoulos, C., Lorenzo, B.J., Browne, S.E., Patel, M.S., and Beal, M.F., Mitochondrial Alpha-Ketoglutarate Dehydrogenase Complex Generates Reactive Oxygen Species, J. Neurosci., 2004, vol. 24, pp. 7779–7788.

    Article  PubMed  CAS  Google Scholar 

  • Tahara, E.B., Barros, M.H., Oliveira, G.A., Netto, L.E., and Kowaltowski, A.J., Dihydrolipoyl Dehydrogenase as a Source of Reactive Oxygen Species Inhibited by Caloric Restriction and Involved in Saccharomyces cerevisiae Aging, FASEB J., 2007, vol. 21, pp. 274–283.

    Article  PubMed  CAS  Google Scholar 

  • Tereshina, E.V., The Role of Fatty Acids in the Development of Age-Related Oxidative Stress: Hypothesis, Usp. Gerontol., 2007, vol. 20, pp. 59–65.

    Google Scholar 

  • Thomas, H., in Topics in Current Genetics: Model Systems in Aging, Nyström, T. and Osiewacz, H.D., Eds., Berlin: Springer-Verlag, 2004, pp. 145–172.

    Google Scholar 

  • Toussaint, O., Salmon, M., Royer, V., Dierick, J.-F., Magalhaes, J.P., Wenders, F., Zdanov, S., Chrétien, A., Borlon, C., Pascal, T., and Chainiaux, F., in Topics in Current Genetics: Model Systems in Aging, Nyström, T. and Osiewacz, H.D., Eds., Berlin: Springer-Verlag, 2004, pp. 269–294.

    Google Scholar 

  • Turker, M.S. and Cummings, D.J., Podospora anserina Does not Senesce When Serially Passaged in Liquid Culture, J. Bacteriol., 1987, vol. 169, pp. 454–460.

    PubMed  CAS  Google Scholar 

  • Turrens, J.F., Mitochondrial Formation of Reactive Oxygen Species, J. Physiol., 2003, vol. 552, pp. 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin, B.F., Apoptosis in Plants, Usp. Biol. Khim., 2001, vol. 41, pp. 3–38.

    CAS  Google Scholar 

  • Vaux, D.L. and Korsmeyer, S.J., Cell Death in Development, Cell, 1999, vol. 96, pp. 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Walford, R.L., Harris, S.B., and Weindruch, R.J., Dietary Restriction and Aging: Historical Phases, Mechanisms and Current Directions, Nutrition, 1987, vol. 117, pp. 1650–1654.

    CAS  Google Scholar 

  • Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L., and Longo, V.D., Life Span Extension by Calorie Restriction Depends on Rim15 and Transcription Factors Downstream of Ras/PKA, Tor, and Sch9, PLoS Genet, 2008, vol. 4, pp. 139–149.

    Article  CAS  Google Scholar 

  • Wei, M., Fabrizio, P., Madia, F., Hu, J., Ge, H., Li, L.M., and Longo, V.D., Tor1/Sch9-Regulated Carbon Source Substitution Is as Effective as Calorie Restriction in Life Span Extension, PLoS Genet., 2009, vol. 5, p. e1000467.

  • Williams, G., Pleiotropy, Natural Selection and the Evolution of Senescence, Evolution, 1957, vol. 11, pp. 398–411.

    Article  Google Scholar 

  • Wu, P.S., Egger, B., and Brand, A.H., Asymmetric Stem Cell Division: Lessons from Drosophila, Semin. Cell Dev. Biol., 2008, vol. 19, pp. 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, Y., Mahowald, A.P., Perlin, J.R., and Fuller, M.T., Asymmetric Inheritance of Mother versus Daughter Centrosome in Stem Cell Division, Science, 2007, vol. 315, pp. 518–521.

    Article  PubMed  CAS  Google Scholar 

  • Yen, T.C., King, K.L., Lee, H.C., Yeh, S.H., and Wei, Y.H., Age-Dependent Increase of Mitochondrial DNA Deletions Together with Lipid Peroxides and Superoxide Dismutase in Human Liver Mitochondria, Free Radic. Biol. Med., 1994, vol. 16, pp. 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Yu, F., Kuo, C.T., and Jan, Y.N., Drosophila Neuroblast Asymmetric Cell Division: Recent Advances and Implications for Stem Cell Biology, Neuron, 2006, vol. 51, pp. 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Zickler, D., From Early Homologue Recognition to Synaptonemal Complex Formation, Chromosoma, 2006, vol. 115, pp. 158–174.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Mazheika.

Additional information

Original Russian Text © I.S. Mazheika, O.A. Kudryavtseva, O.V. Kamzolkina, 2011, published in Zhurnal Obshchei Biologii, 2011, Vol. 72, No. 4, pp. 243–268.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazheika, I.S., Kudryavtseva, O.A. & Kamzolkina, O.V. Longevity control in fungi and other organisms: The conception of scales. Biol Bull Rev 2, 55–75 (2012). https://doi.org/10.1134/S2079086412010045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086412010045

Keywords

Navigation