Russian Journal of Genetics: Applied Research

, Volume 7, Issue 7, pp 781–788 | Cite as

Homeobox genes encoding WOX transcription factors in the flowering parasitic plant Monotropa hypopitys

  • A. V. Shchennikova
  • O. A. Shulga
  • E. Z. Kochieva
  • A. V. Beletsky
  • M. A. Filyushin
  • N. V. Ravin
  • K. G. Skryabin


The formation and maintenance of plant stem cell populations are controlled by the WOX family of homeobox-containing transcription factors. The evolution of WOX genes is considered one of the main reasons for the morphology of flowers and the diversity in plant architecture. The stem cell regulation mechanism is considered to be conserved among flowering plants and most thoroughly studied in Arabidopsis thaliana as a model. The angiosperms morphological diversity implies that there are species-specific features inherent in this mechanism, while the basic signaling is maintained. The unique flowering achlorophyllous mycoheterotrophic plant Monotropa hypopitys obtains nutrients from the tree roots through the mycorrhizal symbiosis. In inductive conditions, the reproductive stem with bracts and an inflorescence at the top is developed from an adventitious root bud. Like other plants, M. hypopitys forms the inflorescence, flower and root meristems, presumably using the conserved mechanisms regulating the stem cell niche. The study of M. hypopitys homeobox genes should contribute to the knowledge about the function of WOX transcription factors and the further understanding of the stem cells’ control mechanisms in the mycoheterotrophic species. The aim of this study is to analyze the M. hypopitys root, bracts, and flower transcriptomes obtained from two individual flowering plants. In total, five WOX genes have been identified and characterized by their structure, phylogeny, expression pattern, and possible functions. The assumption is that the MhyWUS1 and MhyWUS2 genes maintain the stem cell population in the inflorescence and flower meristems; MhyWOX13 has a role in controlling the root stem cell niche, seed pod formation, flowering initiation, and basic cellular processes; MhyWOX4 controls the cambium stem cells; and MhyWOX2 participates in the differentiation of egg cells and zygotes.


Monotropa hypopitys mycoheterotroph transcriptome plant stem cells meristem WUSCHELRELATED HOMEOBOX transcription factors WOX genes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beletsky, A.B., Filyushin, M.A., Gruzdev, E.V., Mazur, A.M., Prokhortchouk, E.B., Kochieva, E.Z., Mardanov, A.B., Ravin, N.V., and Skryabin, K.G., De novo transcriptome assembly of the mycoheterotrophic plant Monotropa hypopitys, Genomics Data, 2016, vol. 11, pp. 60–61. doi 10.1016/j.gdata.2016.11.020CrossRefPubMedPubMedCentralGoogle Scholar
  2. Besnard, F., Vernoux, T., and Hamant, O., Organogenesis from stem cells in planta: Multiple feedback loops integrating molecular and mechanical signals, Cell Mol. Life Sci., 2011, vol. 68, no. 17, pp. 2885–2906. doi 10.1007/s00018-011-0732-4CrossRefPubMedGoogle Scholar
  3. Bidartondo, M.I., The evolutionary ecology of myco-heterotrophy, New Phytol., 2005, vol. 167, no. 2, pp. 335–352. doi 10.1111/j.1469-8137.2005.01429.xCrossRefPubMedGoogle Scholar
  4. Breuninger, H., Rikirsch, E., Hermann, M., Ueda, M., and Laux, T., Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo, Dev. Cell, 2008, vol. 14, no. 6, pp. 867–876. doi 10.1016/j.devcel.2008.03.008CrossRefPubMedGoogle Scholar
  5. Bürglin, T.R. and Affolter, M., Homeodomain proteins: An update, Chromosoma, 2016, vol. 125, no. 3, pp. 497–521. doi 10.1007/s00412-015-0543-8CrossRefPubMedGoogle Scholar
  6. Chapman, A.D., Numbers of Living Species in Australia and the World. Australian Biological Resources Study, Canberra, 2009. Scholar
  7. Costanzo, E., Trehin, C., and Vandenbussche, M., The role of WOX genes in flower development, Ann. Bot., 2014, vol. 114, no. 7, pp. 1545–1553. doi 10.1093/aob/mcu123CrossRefPubMedPubMedCentralGoogle Scholar
  8. Daum, G., Medzihradszky, A., Suzaki, T., and Lohmann, J.U., A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 40, pp. 14619–14624. doi 10.1073/pnas.1406446111CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deveaux, Y., Toffano-Nioche, C., Claisse, G., Thareau, V., Morin, H., Laufs, P., Moreau, H., Kreis, M., and Lecharny, A., Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis, BMC Evol. Biol., 2008, vol. 8, p. 291. doi 10.1186/1471-2148-8-291CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dolzblasz, A., Nardmann, J., Clerici, E., Causier, B., van der Graaff, E., Chen, J., Davies, B., Werr, W., and Laux, T., Stem cell regulation by Arabidopsis WOX genes, Mol. Plant, 2016, vol. 9, no. 7, pp. 1028–1039. doi 10.1016/j.molp.2016.04.007CrossRefPubMedGoogle Scholar
  11. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., et al., Full-length transcriptome assembly from RNA-seq data without a reference genome, Nat. Biotechnol., 2011, vol. 29, no. 7, pp. 644–652. doi 10.1038/nbt.1883CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gross-Hardt, R., Lenhard, M., and Laux, T., WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development, Genes Dev., 2002, vol. 16, no. 9, pp. 1129–1138. doi 10.1101/gad.225202CrossRefPubMedPubMedCentralGoogle Scholar
  13. Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., et al., De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc., 2013, vol. 8, no. 8, pp. 1494–1512. doi 10.1038/nprot.2013.084CrossRefPubMedGoogle Scholar
  14. Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., and Laux, T., Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana, Development, 2004, vol. 131, no. 3, pp. 657–668. doi 10.1242/dev.00963CrossRefPubMedGoogle Scholar
  15. Hedman, H., Zhu, T., von Arnold, S., and Sohlberg, J.J., Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns, BMC Plant Biol., 2013, vol. 13, p. 89. doi 10.1186/1471-2229-13-89CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ji, J., Shimizu, R., Sinha, N., and Scanlon, M.J., Analyses of WOX4 transgenics provide further evidence for the evolution of the WOX gene family during the regulation of diverse stem cell functions, Plant Signal. Behav., 2010, vol. 5, no. 7, pp. 916–920. doi 10.1104/pp.109.149641CrossRefPubMedPubMedCentralGoogle Scholar
  17. Katsir, L., Davies, K.A., Bergmann, D.C., and Laux, T., Peptide signaling in plant development, Curr. Biol., 2011, vol. 21, no. 9, pp. R356–R364. doi 10.1016/j.cub.2011.03.012CrossRefPubMedPubMedCentralGoogle Scholar
  18. Langmead, B. and Salzberg, S., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, pp. 357–359. doi 10.1038/nmeth.1923CrossRefPubMedPubMedCentralGoogle Scholar
  19. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G., Clustal W and clustal X version 2.0, Bioinformatics, 2007, vol. 23, no. 21, pp. 2947–2948. doi 10.1093/bioinformatics/btm404CrossRefPubMedGoogle Scholar
  20. Laux, T., Mayer, K.F., Berger, J., and Jürgens, G., The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis, Development, 1996, vol. 122, no. 1, pp. 87–96. Scholar
  21. Leake, J.R., The biology of myco-heterotrophic (“saprophytic”) plants, New Phytol., 1994, vol. 127, pp. 171–216.CrossRefGoogle Scholar
  22. Lenhard, M., Bohnert, A., Jurgens, G., and Laux, T., Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS, Cell, 2001, vol. 105, no. 6, pp. 805–814. doi 10.1016/S0092-8674(01)00390-7CrossRefPubMedGoogle Scholar
  23. Li, B. and Dewey, C.N., RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, 2011, vol. 12, p. 323. doi 10.1186/1471-2105-12-323CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lieber, D., Lora, J., Schrempp, S., Lenhard, M., and Laux, T., Arabidopsis WIH1 and WIH2 genes act in the transition from somatic to reproductive cell fate, Curr. Biol., 2011, vol. 21, no. 12, pp. 1009–1017. doi 10.1016/j.cub.2011.05.015CrossRefPubMedGoogle Scholar
  25. Lin, H., Niu, L., McHale, N.A., Ohme-Takagi, M., Mysore, K.S., and Tadege, M., Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 1, pp. 366–371. doi 10.1073/pnas.1215376110CrossRefPubMedGoogle Scholar
  26. Liu, X., Kim, Y.J., Müller, R., Yumul, R.E., Liu, C., Pan, Y., Cao, X., Goodrich, J., and Chen, X., AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins, Plant Cell, 2011, vol. 23, no. 10, pp. 3654–3670. doi 10.1105/tpc.111.091538CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R., and Weigel, D., A molecular link between stem cell regulation and floral patterning in Arabidopsis, Cell, 2001, vol. 105, no. 6, pp. 793–803. doi 10.1016/S0092-8674(01)00384-1CrossRefPubMedGoogle Scholar
  28. Merckx V.S.F.T., Freudenstein J.V., Kissling J., Christenhusz M.J.M, Stotler R.E., Crandall-Stotler B., Wickett N., Rudall P.J., Maas-van de Kamer H., Maas P.J.M. Chapter “Taxonomy and Classification” pp 73–83. Mycoheterotrophy: The Biology of Plants Living on Fungi, Merckx, V.S.F.T., Ed., New York: Springer Science+Buisness Media, 2013. doi 10.1007/978-1-4614-5209-610.1007/978-1-4614-5209-6CrossRefGoogle Scholar
  29. Nakata, M., Matsumoto, N., Tsugeki, R., Rikirsch, E., Laux, T., and Okada, K., Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis, Plant Cell, 2012, vol. 24, no. 2, pp. 519–535. doi 10.1105/tpc.111.092858CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nardmann, J. and Werr, W., The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns, Plant. Mol. Biol., 2012, vol. 78, nos. 1–2, pp.123–134. doi 10.1007/s11103-011-9851-4CrossRefPubMedGoogle Scholar
  31. Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E., and Werr, W., WOX gene phylogeny in Poaceae: A comparative approach addressing leaf and embryo development, Mol. Biol. Evol., 2007, vol. 24, no. 11, pp. 2474–2484. doi 10.1093/molbev/msm182CrossRefPubMedGoogle Scholar
  32. Nimchuk, Z.L., Tarr, P.T., Ohno, C., Qu, X., and Meyerowitz, E.M., Plant stem cell signaling involves liganddependent trafficking of the CLAVATA1 receptor kinase, Curr. Biol., 2011, vol. 21, no. 5, pp. 345–352. doi 10.1016/j.cub.2011.01.039CrossRefPubMedPubMedCentralGoogle Scholar
  33. Oshchepkova, E.A., Omelyanchuk, N.A., Savina, M.S., Pasternak, T., Kolchanov, N.A., and Zemlyanskaya, E.V., Systems biology analysis of the WOX5 gene and its functions in the root stem cell niche, Russ. J. Genet.: Appl. Res., 2017, vol. 7, no. 4, pp. 404–420.CrossRefGoogle Scholar
  34. Park, S.O., Zheng, Z., Oppenheimer, D.G., and Hauser, B.A., The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development, Development, 2005, vol. 132, no. 4, pp. 841–849. doi 10.1242/dev.01654CrossRefPubMedGoogle Scholar
  35. Pi, L., Aichinger, E., van der Graaff, E., Llavata-Peris, C.I., Weijers, D., Hennig, L., Groot, E., and Laux, T., Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression, Dev. Cell, 2015, vol. 33, no. 5, pp. 576–588. doi 10.1016/j.devcel.2015.04.024CrossRefPubMedGoogle Scholar
  36. Prunet, N., Morel, P., Negrutiu, I., and Trehin, C., Time to stop: Flower meristem termination, Plant Physiol., 2009, vol. 150, no. 4, pp. 1764–1772. doi 10.1104/pp.109.141812CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ravin, N.V., Gruzdev, E.V., Beletsky, A.V., Mazur, A.M., Prokhortchouk, E.B., Filyushin, M.A., Kochieva, E.Z., Kadnikov, V.V., Mardanov, A.V., and Skryabin, K.G., The loss of photosynthetic pathways in the plastid and nuclear genomes of the non-photosynthetic mycoheterotrophic eudicot Monotropa hypopitys, BMC Plant Biol., 2016, vol. 16, nos. 3, p. 238. doi 10.1186/s12870-016-0929-7CrossRefPubMedGoogle Scholar
  38. Romera-Branchat, M., Ripoll, J.J., Yanofsky, M.F., and Pelaz, S., The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit, Plant J., 2013, vol. 73, no. 1, pp. 37–49. doi 10.1111/tpj.12010CrossRefPubMedGoogle Scholar
  39. Sakakibara, K., Reisewitz, P., Aoyama, T., Friedrich, T., Ando, S., Sato, Y., Tamada, Y., Nishiyama, T., Hiwatashi, Y., Kurata, T., Ishikawa, M., Deguchi, H., Rensing, S.A., Werr, W., Murata, T., Hasebe, M., and Laux, T., WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens, Development, 2014, vol. 141, no. 8, pp. 1660–1670. doi 10.1242/dev.097444CrossRefPubMedGoogle Scholar
  40. Salvini, M., Fambrini, M., Giorgetti, L., and Pugliesi, C., Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.): Correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L, Planta, 2016, vol. 243, no. 1, pp. 199–215. doi 10.1007/s00425-015-2405-2CrossRefPubMedGoogle Scholar
  41. Sarkar, A.K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., and Laux, T., Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers, Nature, 2007, vol. 446, no. 7137, pp. 811–814. doi 10.1038/nature05703CrossRefPubMedGoogle Scholar
  42. Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jurgens, G., and Laux, T., The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes, Cell, 2000, vol. 100, no. 6, pp. 635–644. doi 10.1016/S0092-8674(00)80700-XCrossRefPubMedGoogle Scholar
  43. Segatto, A.L., Thompson, C.E., and Freitas, L.B., Contribution of WUSCHEL-related homeobox (WOX) genes to identify the phylogenetic relationships among Petunia species, Genet. Mol. Biol., 2016. doi 10.1590/1678-4685-GMB-2016-0073Google Scholar
  44. Somssich, M., Je, B.I., Simon, R., and Jackson, D., CLAVATA-WUSCHEL signaling in the shoot meristem, Development, 2016, vol. 143, no. 18, pp. 3238–3248. doi 10.1242/dev.133645CrossRefPubMedGoogle Scholar
  45. Suer, S., Agusti, J., Sanchez, P., Schwarz, M., and Greb, T., WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis, Plant Cell, 2011, vol. 23, pp. 3247–3259. doi 10.1105/tpc.111.087874CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sun, B. and Ito, T., Regulation of floral stem cell termination in Arabidopsis, Front. Plant Sci., 2015, vol. 6, p. 17. doi 10.3389/fpls.2015.00017PubMedPubMedCentralGoogle Scholar
  47. Sun, B., Xu, Y., Ng, K.H., and Ito, T., A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem, Genes Dev., 2009, vol. 23, no. 15, pp. 1791–1804. doi 10.1101/gad.1800409CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., MEGA6: Molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725–2729. doi 10.1093/molbev/mst197CrossRefPubMedPubMedCentralGoogle Scholar
  49. van der Graaff, E., Laux, T., and Rensing, S.A., The WUS homeobox-containing (WOX) protein family, Genome Biol., 2009, vol. 10, nos. 12, p. 248. doi 10.1186/gb-2009-10-12-248CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vandenbussche, M., Horstman, A., Zethof, J., Koes, R., Rijpkema, A.S., and Gerats, T., Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis, Plant Cell, 2009, vol. 21, no. 8, pp. 2269–2283. doi 10.1105/tpc.109.065862CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wallace, G.D., Studies of the Monotropoidiae (Ericaceae): Taxonomy and distribution, Wassman J. Biol., 1975, vol. 33, pp. 1–88.Google Scholar
  52. Yadav, R.K., Perales, M., Gruel, J., Girke, T., Jönsson, H., and Reddy, G.V., WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex, Genes Dev., 2011, vol. 25, no. 19, pp. 2025–2030.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhao, S., Jiang, Q.T., Ma, J., Zhang, X.W., Zhao, Q.Z., Wang, X.Y., Wang, C.S., Cao, X., Lu, Z.X., Zheng, Y.L., and Wei, Y.M., Characterization and expression analysis of WOX5 genes from wheat and its relatives, Gene, 2014, vol. 537, no. 1, pp. 63–69. doi 10.1016/j.gene.2013.12.022CrossRefPubMedGoogle Scholar
  54. Zuckerkandl, E. and Pauling, L., Evolutionary Divergence and Convergence in Proteins, New York: Acad. Press, 1965, pp. 97–166.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Shchennikova
    • 1
  • O. A. Shulga
    • 1
  • E. Z. Kochieva
    • 1
  • A. V. Beletsky
    • 1
  • M. A. Filyushin
    • 1
  • N. V. Ravin
    • 1
  • K. G. Skryabin
    • 1
  1. 1.Institute of Bioengineering, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations