Russian Journal of Genetics: Applied Research

, Volume 7, Issue 7, pp 789–797 | Cite as

Efficiency of olfactory transport of manganese (II) oxide nanoparticles with single or multiple intranasal administration

  • A. V. Romashchenko
  • M. B. Sharapova
  • D. V. Petrovskii
  • M. P. Moshkin
Article
  • 11 Downloads

Abstract

In experiments in which nano-sized metal oxide particles are multiply administered through inhalation, the absence of a material correlation between the number of they are administered and the metal concentration in olfactory bulbs (OBs) is demonstrated. This circumstance raises the question about a possible decrease in the efficiency of the capture of solid particles by the olfactory epithelium when they are repeatedly introduced in the nasal cavity. In this work, the efficiency of the nasal transport of magneto-contrasting nanoparticles during single and multiple intranasal administration is compared and their effect on the morphofunctional characteristics of the olfactory system is estimated. According to the data obtained, the accumulation of MnO-NP in the OBs of mice decreases during their repeated intranasal application. In addition, the decrease in the efficiency of the olfactory transport (observed during the multiple introduction of MnONP) partially recovers during the intranasal application of a mucolytic agent (0.01 M N-acetyl-L-cysteine). Moreover, the concentration of particles in OBs was proportional to the volume of this structure, which particularly depends on the number of synaptic contacts between the OBs and the olfactory epithelium. It should be noted that the olfactory epithelium’s thickness decreases during the multiple introduction of MnO-NP in mice. Thus, the efficiency of the olfactory transport of nanoparticles from the nasal cavity to the brain decreases during the multiple intranasal introduction of MnO-NP; this is combined with an increase in the mucosal layer’s viscosity and a decrease in the number of synaptic contacts between the OBs and the olfactory epithelium. The results obtained indicate the presence of the natural protection mechanisms of the olfactory epithelium against the penetration of pathogens and xenobiotics and allows us to formulate specific practical recommendations concerning the intranasal application of medications.

Keywords

nanoparticles intranasal introduction magnetic resonance imaging nasal transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartsch, W.G.K.G., Sponer, G., Dietmann, K., and Fuchs, G., Acute toxicity of various solvents in the mouse and rat. LD50 of ethanol, diethylacetamide, dimethylformamide, dimethylsulfoxide, glycerine, N-me-thylpyrrolidone, polyethylene glycol 400, 1, 2-propanediol and tween 20, Arzneimittel-Forschung, 1975, vol. 26, no. 8, pp. 1581–1583.Google Scholar
  2. Bhatnagar, K.P., Kennedy, R.C., Baron, G., and Greenberg, R.A., Number of mitral cells and the bulb volume in the aging human olfactory bulb: A quantitative morphological study, Anat. Rec., 1987, vol. 218, no. 1, pp. 73–87.CrossRefPubMedGoogle Scholar
  3. Calderón-Garcidueñas, L., Franco-Lira, M., Mora-Tiscareno, A., Medina-Cortina, H., Torres-Jardon, R., and Kavanaugh, M., Early Alzheimer’s and Parkinson’s disease pathology in urban children: Friend versus foe responses–it is time to face the evidence, BioMed Res. Int., 2013, vol. 2013, p. 161687.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chattopadhyay, S., Dash, S.K., Tripathy, S., Das, B., Mandal, D., Pramanik, P., and Roy, S., Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study, Chem.-Biol. Interact., 2015, vol. 226, pp. 58–71.CrossRefPubMedGoogle Scholar
  5. Cone, R.A., Barrier properties of mucus, Adv. Drug Delivery Rev., 2009, vol. 61, no. 2, pp. 75–85.CrossRefGoogle Scholar
  6. Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J., and Oberdorster, G., Translocation of inhaled ultrafine manganese oxide particles to the central nervous system, Environ. Health Perspect., 2006, vol. 114, no. 8, pp. 1172–1178.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Evdokov, O.V., Titov, V.M., Tolochko, B.P., and Sharafutdinov, M.R., In situ time-resolved diffractometry at SSTRC, Nucl. Instrum. Methods Phys. Res. A, 2009, vol. 603, no. 1, pp. 194–195.CrossRefGoogle Scholar
  8. Faber, H.K., Silverberg, R.J., and Dong, L., Poliomyelitis in the cynomolgus monkey, J. Exp. Med., 1944, vol. 80, no. 1, pp. 39–57.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Harkin, A., Kelly, J.P., and Leonard, B.E., A review of the relevance and validity of olfactory bulbectomy as a model of depression, Clin. Neurosci. Res., 2003, vol. 3, nos. 4–5, pp. 253–262.CrossRefGoogle Scholar
  10. Hurtt, M.E., Thomas, D.A., Working, P.K., Monticello, T.M., and Morgan, K.T., Degeneration and regeneration of the olfactory epithelium following inhalation exposure to methyl bromide: Pathology, cell kinetics, and olfactory function, Toxicol. Appl. Pharmacol., 1988, vol. 94, no. 2, pp. 311–328.CrossRefPubMedGoogle Scholar
  11. Hussain, S.M., Javorina, A.K., Schrand, A.M., Duhart, H.M., Ali, S.F., and Schlager, J.J., The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion, Toxicol. Sci., 2006, vol. 92, no. 2, pp. 456–463.CrossRefPubMedGoogle Scholar
  12. Kim, Y.S. and Ho, S.B., Intestinal goblet cells and mucins in health and disease: Recent insights and progress, Curr. Gastroenterol. Rep., 2010, vol. 12, no. 5, pp. 319–330.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kitson, C., Angel, B., Judd, D., Rothery, S., Severs, N., Dewar, A., Huang, L., Wadsworth, S., Cheng, S., and Geddes, D., The extra-and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium, Gene Ther., 1999, vol. 6, no. 4, pp. 534–546.CrossRefPubMedGoogle Scholar
  14. Matulionis, D.H., Ultrastructural study of mouse olfactory epithelium following destruction by ZnSO4 and its subsequent regeneration, Am. J. Anat., 1975, vol. 142, no. 1, pp. 67–89.CrossRefPubMedGoogle Scholar
  15. Mesholam, R., Moberg, P., Mahr, R., and Doty, R., Olfaction in neurodegenerative disease: A meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases, Arch. Neurol., 1998, vol. 55, no. 1, pp. 84–90.CrossRefPubMedGoogle Scholar
  16. Mikloska, Z., Sanna, P.P., and Cunningham, A.L., Neutralizing antibodies inhibit axonal spread of herpes simplex virus type 1 to epidermal cells in vitro, J. Virol., 1999, vol. 73, no. 7, pp. 5934–5944.PubMedPubMedCentralGoogle Scholar
  17. Minoshima, S. and Cross, D., In vivo imaging of axonal transport using MRI: Aging and Alzheimer’s disease, Eur. J. Nucl. Med. Mol. Imaging, 2008, vol. 35, no. 1, pp. 89–92.CrossRefGoogle Scholar
  18. Mistry, A., Glud, S.Z., Kjems, J., Randel, J., Howard, K.A., Stolnik, S., and Illum, L., Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium, J. Drug Targeting, 2009, vol. 17, no. 7, pp. 543–552.CrossRefGoogle Scholar
  19. Moshkin, M., Petrovski, D., Akulov, A., Romashchenko, A., Gerlinskaya, L., Ganimedov, V., Muchnaya, M., Sadovsky, A., Koptyug, I., and Savelov, A., Nasal aerodynamics protects brain and lung from inhaled dust in subterranean diggers, Ellobius talpinus, Proc. R. Soc. B: Biol. Sci., 2014, vol. 281, nos. 1792, p. 20140919.CrossRefGoogle Scholar
  20. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., and Cox, C., Translocation of inhaled ultrafine particles to the brain, Inhalation Toxicol., 2004, vol. 16, nos. 6–7, pp. 437–445.CrossRefGoogle Scholar
  21. Olmsted, S.S., Padgett, J.L., Yudin, A.I., Whaley, K.J., Moench, T.R., and Cone, R.A., Diffusion of macromolecules and virus-like particles in human cervical mucus, Biophys. J., 2001, vol. 81, no. 4, pp. 1930–1937.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pautler, R.G. and Koretsky, A.P., Tracing odor-induced activation in the olfactory bulbs of mice using manganeseenhanced magnetic resonance imaging, NeuroImage, 2002, vol. 16, no. 2, pp. 441–448.CrossRefPubMedGoogle Scholar
  23. Royet, J.P., Souchier, C., Jourdan, F., and Ploye, H., Morphometric study of the glomerular population in the mouse olfactory bulb: Numerical density and size distribution along the rostrocaudal axis, J. Comp. Neurol., 1988, vol. 270, no. 4, pp. 559–568.CrossRefPubMedGoogle Scholar
  24. Schellinck, H.M., Rooney, E., and Brown, R.E., Odors of individuality of germfree mice are not discriminated by rats in a habituation-dishabituation procedure, Physiol. Behav., 1995, vol. 57, no. 5, pp. 1005–1008.CrossRefPubMedGoogle Scholar
  25. Sherry Chow, H.H., Zhi, C., and Matsuura, T., Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats, J. Pharmaceut. Sci., 1999, vol. 88, no. 8, pp. 754–758.CrossRefGoogle Scholar
  26. Verkman, A.S., Song, Y., and Thiagarajah, J.R., Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease, Am. J. Physiol. Cell Physiol., 2003, vol. 284, no. 1, pp. C2–C15.CrossRefPubMedGoogle Scholar
  27. Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G., Li, B., Zhao, Y., Chai, Z., and Chen, C., Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles, Toxicology, 2008, vol. 254, nos. 1–2, pp. 82–90.CrossRefPubMedGoogle Scholar
  28. Wu, J., Wang, C., Sun, J., and Xue, Y., Neurotoxicity of silica nanoparticles: Brain localization and dopaminergic neurons damage pathways, ACS Nano, 2011, vol. 5, no. 6, pp. 4476–4489.CrossRefPubMedGoogle Scholar
  29. Xia, S. and Xu, S., Improved assay of coenzyme Q10 from liposomes by Tween 80 solubilisation and UV spectrophotometry, J. Sci. Food Agr., 2006, vol. 86, no. 13, pp. 2119–2127.CrossRefGoogle Scholar
  30. Yu, L.E., Lanry, Yung L.Y., Ong, C.N., Tan, Y.L., Suresh Balasubramaniam, K., Hartono, D., Shui, G., Wenk, M.R., and Ong, W.Y., Translocation and effects of gold nanoparticles after inhalation exposure in rats, Nanotoxicology, 2007, vol. 1, no. 3, pp. 235–242.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Romashchenko
    • 1
    • 2
  • M. B. Sharapova
    • 1
  • D. V. Petrovskii
    • 1
  • M. P. Moshkin
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Computational Technologies, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations