Russian Journal of Genetics: Applied Research

, Volume 7, Issue 7, pp 744–756 | Cite as

The perspectives of metabolomic studies of potato plants

  • R. K. Puzanskiy
  • V. V. Yemelyanov
  • T. A. Gavrilenko
  • M. F. Shishova


According to the Food and Agricultural Organization (FAO) of the United Nations, potato is ranked the fourth crop in terms of food production after rice, wheat and maize, and the first among tuber and root crops. The importance of potato is difficult to overestimate; it is a valuable source of carbohydrates, antioxidants and vitamins. A large number of investigations are focused on the study of metabolic processes occurring in the potato plant in order to elucidate the mechanisms responsible for productivity, accumulation of the compounds that determine taste and nutritional quality, maintaining the quality of tubers in storage, plant resistance to pathogens, etc. The sum of the metabolites, which are produced as a result of the metabolic network activity, is defined as the metabolome. Complex studies of metabolic diversity with the use of modern state-of-the-art chromatography approaches and the highly precise detection of individual compounds revealed the specificity of metabolic spectra from the subcellular to the organismal levels and its amazing plasticity under the influence of a variety of internal and external stimuli. Metabolomic approaches are already in use for phenotyping the available species, lines, and varieties, as well as for evaluating the potato plants’ resistance to environmental challenges and for detecting changes in tubers during storage. Metabolome profiling is widely employed to study differences between genetically modified forms of potatoes from their untransformed relatives. A limited number of systemic studies on potatoes combine metabolome investigations with genome, transcriptome, and proteome analysis. These studies point to the important role of the genome in determining metabolic rates. It is also obvious that the search for biochemical markers depends on standartization of the cultivation techniques, sample preparation and subsequent analysis, similar to the practice developed for the progress in genomic and transcriptomic studies. In the future, metabolome studies could complement the classical and molecular approaches to develop new potato strains and varieties.


potato metabolomics system biology breeding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharjee, A., Kloosterman, B., de Vos, R.C., Werij, J.S., Bachem, C.W., Visser, R.G.F., and Maliepaard, C., Data integration and network reconstruction with ~omics data using Random Forest regression in potato, Anal. Chim. Acta., 2011, vol. 705, nos. 1–2, pp. 56–63. doi 10.1016/j.aca.2011.03.050CrossRefPubMedGoogle Scholar
  2. Acharjee, A., Kloosterman, B., Visser, R.G., and Maliepaard, C., Integration of multi-omics data for prediction of phenotypic traits using random forest, BMC Bioinf., 2016, vol. 17, nos. 5, p. 180. doi 10.1186/s12859-016-1043-4CrossRefGoogle Scholar
  3. Beckmann, M., Enot, D.P., Overy, D.P., and Draper, J., Representation, comparison and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars, J. Agric. Food Chem., 2007, vol. 55, no. 9, pp. 3444–3451. doi 10.1021/jf0701842CrossRefPubMedGoogle Scholar
  4. Benkeblia, N., Shinano, T., and Osaki, M., Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GCMS analysis, Metabolomics, 2007, vol. 3, no. 3, pp. 297–305. doi 10.1007/s11306-007-0078-yCrossRefGoogle Scholar
  5. Boughton, B.A., Thinagaran, D., Sarabia, D., Bacic, A., and Roessner, U., Mass spectrometry imaging for plant biology: A review, Phytochem. Rev., 2016, vol. 15, no. 3, pp. 445–488. doi 10.1007/s11101-015-9440-2CrossRefPubMedGoogle Scholar
  6. Breiman, L., Random forests, Mach. Learn., 2001, vol. 45, no. 1, pp. 5–32. doi 10.1023/A:1010933404324CrossRefGoogle Scholar
  7. Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J.K., Holmes, E., and Trygg, J., OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification, J. Chemometrics, 2006, vol. 20, nos. 8–10, pp. 341–351. doi 10.1002/cem.1006CrossRefGoogle Scholar
  8. Carreno-Quintero, N., Acharjee, A., Maliepaard, C., Bachem, C.W., Mumm, R., Bouwmeester, H., Visser, R.G., and Keurentjes, J.J., Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality, Plant Physiol., 2012, vol. 158, no. 3, pp. 1306–1318. doi 10.1104/pp.111.188441CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carreno-Quintero, N., Bouwmeester, H.J., and Keurentjes, J.J., Genetic analysis of metabolome-phenotype interactions: From model to crop species, Trends Genet., 2013, vol. 29, no. 1, pp. 41–50. doi 10.1016/j.tig.2012.09.006CrossRefPubMedGoogle Scholar
  10. Catchpole, G., Beckmann, M., Enot, D., Mondhe, M., Zywicki, B., Taylor, J., Hardy, N., Smith, A., King, R., Kell, D., Fiehn, O., and Draper, J., Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 40, pp. 14458–14462. doi 10.1073/pnas.0503955102CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chin, E. and Slupsky, C., Applications of metabolomics in food science: Food composition and quality, sensory and nutritional attributes, in Metabolomics in Food and Nutrition, Elsevier, 2013, pp. 217–230. doi 10.1533/9780857098818.2.217CrossRefGoogle Scholar
  12. Cho, K., Cho, K.S., Sohn, H.B., Ha, I.J., Hong, S.Y., Lee, H., Kim, Y.M., and Nam, H.M., Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation, J. Exp. Bot., 2016, vol. 67, no. 5, pp. 1519–1533. doi 10.1093/jxb/erv549CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chong, E.S.L., McGhie, T.K., Heyes, J.A., and Stowell, K.M., Metabolite profiling and quantification of phytochemicals in potato extracts using ultra-high-performance liquid chromatography-mass spectrometry, J. Sci. Food Agr., 2013, vol. 93, no. 15, pp. 3801–3808. doi 10.1002/jsfa.6285CrossRefGoogle Scholar
  14. Corsini, D.L., Pavek, J.J., and Dean, B., Differences in free and protein-bound tyrosine among potato genotypes and the relationship to internal blackspot resistance, Am. Potato J., 1992, vol. 69, no. 7, pp. 423–435. doi 10.1007/BF02852293CrossRefGoogle Scholar
  15. Dalgliesh, C.E., Horning, E.C., Horning, M.G., Knox, K.L., and Yarger, K., A gas-liquid-chromatographic procedure for separating a wide range of metabolites occurring in urine or tissue extracts, Biochem. J., 1966, vol. 101, no. 3, pp. 792–810. doi 10.1042/bj1010792CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dao, L. and Friedman, M., Chlorogenic acid content of fresh and processed potatoes determined by ultraviolet spectrophotometry, J. Agric. Food Chem., 1992, vol. 40, no. 11, pp. 2152–2156. doi 10.1021/jf00023a022CrossRefGoogle Scholar
  17. Davies, H.V., Shepherd, L.V., Burrell, M.M., Carrari, F., Urbanczyk-Wochniak, E., Leisse, A., Hancock, R.D., Taylor, M., Viola, R., Ross, H., McRae, D., Willmitzer, L., and Fernie, A.R., Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism, Plant Cell Physiol., 2005, vol. 46, no. 7, pp. 1103–1115. doi 10.1093/pcp/pci123CrossRefPubMedGoogle Scholar
  18. Debon, S.J.J., Tester, R.F., Millam, S., and Davies, H.V., Effect of temperature on the synthesis, composition and physical properties of potato microtuber starch, J. Sci. Food Agric., 1998, vol. 76, no. 4, pp. 599–607. doi 10.1002/(SICI)1097-0010(199804)76:4<599::AID-JSFA995>3.0.CO;2-FCrossRefGoogle Scholar
  19. Defernez, M., Gunning, Y.M., Parr, A.J., Shepherd, L.V., Davies, H.V., and Colquhoun, I.J., NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways, J. Agric. Food Chem., 2004, vol. 52, no. 20, pp. 6075–6085. doi 10.1021/jf049522eCrossRefPubMedGoogle Scholar
  20. Desire, S., Couillerot, J.P., Hilbert, J.L., and Vasseur, J., Protein changes in Solanum tuberosum during in vitro tuberization of nodal cuttings, Plant Physiol. Biochem., 1995, vol. 33, no. 4, pp. 303–310.Google Scholar
  21. Dixon, R.A., Gang, D.R., Charlton, A.J., Fiehn, O., Kuiper, H.A., Reynolds, T.L., Tjeerdema, R.S., Jeffery, E.H., German, J.B., Ridley, W.P., and Seiber, J.N., Applications of metabolomics in agriculture, J. Agric. Food Chem., 2006, vol. 54, no. 24, pp. 8984–8994. doi 10.1021/jf061218tCrossRefPubMedGoogle Scholar
  22. Dobson, G., Shepherd, T., Verrall, S.R., Conner, S., McNicol, J.W., Ramsay, G., Shepherd, L.V., Davies, H.V., and Stewart, D., Phytochemical diversity in tubers of potato cultivars and landraces using a GC-MS metabolomics approach, J. Agric. Food Chem., 2008, vol. 56, no. 21, pp. 10280–10291. doi 10.1021/jf801370bCrossRefPubMedGoogle Scholar
  23. Dobson, G., Shepherd, T., Verrall, S.R., Griffiths, W.D., Ramsay, G., McNicol, J.W., Davies, H.V., and Stewart, D., A metabolomics study of cultivated potato (Solanum tuberosum) groups Andigena, Phureja, Stenotomum, and Tuberosum using gas chromatography-mass spectrometry, J. Agric. Food Chem., 2010, vol. 58, no. 2, pp. 1214–1223. doi 10.1021/jf903104bCrossRefPubMedGoogle Scholar
  24. Dodds, K.S., Classification of cultivated potatoes, in The Potato and Its Wild Relatives, Correll, D.S., Ed., Contrib. Texas Res. Foundation, Bot. Stud., 1962, vol. 4, pp. 517–539.Google Scholar
  25. Doerge, R.W., Mapping and analysis of quantitative trait loci in experimental populations, Nat. Rev. Genet., 2002, vol. 3, no. 1, pp. 43–52. doi 10.1038/nrg703CrossRefPubMedGoogle Scholar
  26. Duckham, S.C., Dodson, A.T., Bakker, J., and Ames, J.M., Volatile flavour components of baked potato flesh. a comparison of eleven potato cultivars, Nahrung, 2001, vol. 45, no. 5, pp. 317–323. doi (20011001)45:5<317::AIDFOOD317>3.0.CO;2-4 doi 10.1002/1521-3803CrossRefPubMedGoogle Scholar
  27. Enot, D.P., Beckmann, M., and Draper, J., Detecting a difference—assessing generalisability when modelling metabolome fingerprint data in longer term studies of genetically modified plants, Metabolomics, 2007, vol. 3, no. 3, pp. 335–347. doi 10.1007/s11306-007-0064-4CrossRefGoogle Scholar
  28. Farre, E.M., Fernie, A.R., and Willmitzer, L., Analysis of subcellular metabolite levels of potato tubers (Solanum tuberosum) displaying alterations in cellular or extracellular sucrose metabolism, Metabolomics, 2008, vol. 4, no. 2, pp. 161–170. doi 10.1007/s11306-008-0107-5CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fernie, A.R. and Schauer, N., Metabolomics-assisted breeding: A viable option for crop improvement?, Trends Genet., 2009, vol. 25, no. 1, pp. 39–48. doi 10.1016/j.tig.2008.10.010CrossRefPubMedGoogle Scholar
  30. Fernie, A.R. and Willmitzer, L., Molecular and biochemical triggers of potato tuber development, Plant Physiol., 2001, vol. 127, no. 4, pp. 1459–1465. doi 10.1104/pp.010764CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fernie, A.R., Tauberger, E., Lytovchenko, A., Roessner, U., Willmitzer, L., and Trethewey, R.N., Antisense repression of cytosolic phosphoglucomutase in potato (Solanum tuberosum) results in severe growth retardation, reduction in tuber number and altered carbon metabolism, Planta, 2002, vol. 214, no. 4, pp. 510–520. doi 10.1007/s004250100644CrossRefPubMedGoogle Scholar
  32. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R.N., and Willmitzer, L., Metabolite profiling for plant functional genomics, Nat. Biotechnol., 2000, vol. 18, no. 11, pp. 1157–1161. doi 10.1038/81137CrossRefPubMedGoogle Scholar
  33. Fly, R., Lloyd, J., Krueger, S., Fernie, A., and van der Merwe, M.J., Improvements to define mitochondrial metabolomics using nonaqueous fractionation, Methods Mol. Biol., 2015, vol. 1305, pp. 197–210. doi 10.1007/978-1-4939-2639-8_14CrossRefPubMedGoogle Scholar
  34. Frank, T. and Engel, K., Metabolomic analysis of plants and crops, in Metabolomics in Food and Nutrition, Elsevier, 2013, pp. 148–191. doi 10.1533/9780857098818.2.148CrossRefGoogle Scholar
  35. Friedman, M., Potato glycoalkaloids and metabolites: Roles in the plant and in the diet, J. Agric. Food Chem., 2006, vol. 54, no. 23, pp. 8655–8681. doi 10.1021/jf061471tCrossRefPubMedGoogle Scholar
  36. Fukushima, A. and Engel, M., Recent progress in the development of metabolome databases for plant systems biology, Front. Plant Sci., 2013, vol. 4, p. 73. doi 10.3389/fpls.2013.00073CrossRefPubMedPubMedCentralGoogle Scholar
  37. Geigenberger, P., Tiessen, A., and Meurer, J., Use of nonaqueous fractionation and metabolomics to study chloroplast function in Arabidopsis, Methods Mol. Biol., 2011, vol. 775, pp. 135–160. doi 10.1007/978-1-61779-237-3_8CrossRefPubMedGoogle Scholar
  38. Grierson, C.S., Barnes, S.R., Chase, M.W., Clarke, M., Grierson, D., Edwards, K.J., Jellis, G.J., Jones, J.D., Knapp, S., Oldroyd, G., Poppy, G., Temple, P., Williams, R., and Bastow, R., One hundred important questions facing plant science research, New Phytol., 2011, vol. 192, no. 1, pp. 6–12.CrossRefPubMedGoogle Scholar
  39. Guedon, E., Desvaux, M., and Pettitdemange, H., Kinetic analysis of Clostridium cellulyticum carbohydrate metabolism: Importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture, J. Bacteriol., 2000, vol. 182, no. 7, pp. 2010–2017. doi 10.1128/JB.182.7.2010-2017.2000CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hall, R.D., Brouwer, I.D., and Fitzgerald, M.A., Plant metabolomics and its potential application for human nutrition, Physiol. Plant., 2008, vol. 132, no. 2, pp. 162–175. doi 10.1111/j.1399-3054.2007.00989.xPubMedGoogle Scholar
  41. Hellwege, E., Czapla, S., Jahnke, A., Willmitzer, L., and Heyer, A., Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 15, pp. 8699–8704. doi 10.1073/pnas.150043797CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hill, C.B., Taylor, J.D., Edwards, J., Mather, D., Langridge, P., Bacic, A., and Roessner, U., Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology, Plant Sci., 2015, vol. 233, pp. 143–154. doi 10.1016/j.plantsci.2015.01.008CrossRefPubMedGoogle Scholar
  43. Hoekenga, O.A., Using metabolomics to estimate unintended effects in transgenic crop plants: Problems, promises, and opportunities, J. Biomol. Tech., 2008, vol. 19, no. 3, pp. 159–166.PubMedPubMedCentralGoogle Scholar
  44. Horning, E.C. and Horning, M.G., Human metabolic profiles obtained by GC and GC/MS, J. Chromatogr. Sci., 1971, vol. 9, no. 3, pp. 129–140. doi 10.1093/chromsci/9.3.129CrossRefGoogle Scholar
  45. Jaakola, L., New insights into the regulation of anthocyanin biosynthesis in fruits, Trends Plant Sci., 2013, vol. 18, no. 9, pp. 477–483. doi 10.1016/j.tplants.2013.06.003CrossRefPubMedGoogle Scholar
  46. Joseph, B., Atwell, S., Corwin, J.A., Li, B., and Kliebenstein, D.J., Meta-analysis of metabolome QTLs in Arabidopsis: Trying to estimate the network size controlling genetic variation of the metabolome, Front. Plant Sci., 2014, vol. 5, no 461. doi 10.3389/fpls.2014.00461Google Scholar
  47. Joseph, B., Corwin, J.A., and Kliebenstein, D.J., Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense, PLoS Genet., 2015, vol. 11, no. 1. doi 10.1371/journal.pgen.1004779Google Scholar
  48. Joseph, B., Corwin, J.A., Li, B., Atwell, S., and Kliebenstein, D.J., Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome, eLife, 2013, vol. 2. doi 10.7554/eLife.0077Google Scholar
  49. Kloosterman, B., Oortwijn, M., Uitdewilligen, J., America, T., de Vos, R., Visser, R.G.F., and Bachem, C.W., From QTL to candidate gene: Genetical genomics of simple and complex traits in potato using a pooling strategy, BMC Genomics, 2010, vol. 11, p. 158. doi 10.1186/1471-2164-11-158CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kolbe, H. and Stephan-Beckmann, S., Development, growth and chemical composition of the potato crop (Solanum tuberosum L.). II. Tuber and whole plant, Potato Res., 1997, vol. 40, no. 2, pp. 135–153. doi 10.1007/BF02358240CrossRefGoogle Scholar
  51. López-Caamal, A. and Tovar-Sánchez, E., Genetic, morphological, and chemical patterns of plant hybridization, Rev. Chil. Hist. Nat., 2014, vol. 87, p. 16. doi 10.1186/s40693-014-0016-0CrossRefGoogle Scholar
  52. Lachman, J. and Hamouz, K., Red and purple coloured potatoes as a significant antioxidant source in human nutrition—a review, Plant Soil Environ., 2005, vol. 51, no. 11, pp. 477–482.Google Scholar
  53. Lachman, J., Hamouz, K., Orsák, M., and Pivec, V., Potato tubers as a significant source of antioxidants in human nutrition, Rostlinná Vyroba, 2000, vol. 46, no. 5, pp. 231–236.Google Scholar
  54. Leidreiter, K., Kruse, A., Heineke, D., Robinson, D.G., and Heldt, H.W., Subcellular volumes and metabolite concentrations in potato (Solanum tuberosum cv. Desiree) leaves, Bot. Acta, 1995, vol. 108, no. 5, pp. 439–444. doi 10.1111/j.1438-8677.1995.tb00518.xCrossRefGoogle Scholar
  55. Liebeke, M., Bruford, M.W., Donnelly, R.K., Ebbels, T.M.D., Hao, J., Kille, P., Lahive, E., Madison, R.M., Morgan, A.J., Pinto-Juma, G.A., Spurgeon, D.J., Svendsen, C., and Bundy, J.G., Identifying biochemical phenotypic differences between cryptic species, Biol. Lett., 2014, vol. 10, nos. 9, p. 20140615. doi 10.1098/rsbl.2014.0615CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lytovchenko, A., Bieberich, K., Willmitzer, L., and Fernie, A.R., Carbon assimilation and metabolism in potato leaves deficient in plastidial phosphoglucomutase, Planta, 2002a, vol. 215, no. 5, pp. 802–811. doi 10.1007/s00425-002-0810-9CrossRefPubMedGoogle Scholar
  57. Lytovchenko, A., Sweetlove, L., Pauly, M., and Fernie, A.R., The influence of cytosolic phosphoglucomutase on photosynthetic carbohydrate metabolism, Planta, 2002b, vol. 215, no. 6, pp. 1013–1021. doi 10.1007/s00425-002-0826-1CrossRefPubMedGoogle Scholar
  58. Martin, F. and Ames, J.M., Formation of Strecker aldehydes and pyrazines in a fried potato model system, J. Agric. Food Chem., 2001, vol. 49, no. 8, pp. 3885–3892. doi 10.1021/jf010310gCrossRefPubMedGoogle Scholar
  59. Nema, P.K., Ramayya, N., Duncan, E., and Niranjan, K., Potato glycoalkaloids: formation and strategies for 392 mitigation, J. Sci. Food Agric., 2008, vol. 88, no. 11, pp. 1869–1881. doi 10.1002/jsfa.3302CrossRefGoogle Scholar
  60. Oliver, S.G., Winson, M.K., Kell, D.B., and Baganz, F., Systematic functional analysis of the yeast genome, Trends Biotechnol., 1998, vol. 16, no. 9, pp. 373–378. doi 10.1016/S0167-7799(98)01214-1CrossRefPubMedGoogle Scholar
  61. Park, Y., Cho, J., Cho, H., Yi, J., Seo, H., and Choung, M., A new potato cultivar “Hongyoung”, with red skin and flesh color, and high concentrations of anthocyanins, Korean J. Breed. Sci., 2009a, vol. 41, no. 4, pp. 502–506.Google Scholar
  62. Park, Y., Cho, J., Cho, H., Yi, J., Seo, H., and Chung, M., A new potato cultivar “Jayoung”, with high concentration of anthocyanin, Korean J. Breed. Sci., 2009b, vol. 41, no. 1, pp. 51–55.CrossRefGoogle Scholar
  63. Pauling, L., Robinson, A.B., Teranishi, R., and Cary, P., Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography, Proc. Natl. Acad. Sci. U.S.A., 1971, vol. 68, no. 10, pp. 2374–2376.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Puzanskii, R.K., Shavarda, A.L., and Shishova, M.F., Dynamics of the metabolome of cells of the autotrophic culture of Chlamydomonas reinhardtii in the period of exponential and stationary growth phase, Vestn. SPbGU, Ser. 3, 2015, vol. 1, pp. 104–121.Google Scholar
  65. Raamsdonk, L.M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M.C., Berden, J.A., Brindle, K.M., Kell, D.B., Rowland, J.J., Westerhoff, H.V., van Dam, K., and Oliver, S.G., A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations, Nat. Biotechnol., 2001, vol. 19, no. 1, pp. 45–50. doi 10.1038/83496CrossRefPubMedGoogle Scholar
  66. Ray, W.J. and Peck, E.J., Phosphoglucomutases, in The Enzymes. New York: Acad. Press, 1973, pp. 407–488.Google Scholar
  67. Richardson, D.L., Davies, H.V., and Ross, H.A., Potato tuber sugar content during development and storage (10°C): Possible predictors of storage potential and the role of sucrose in storage hexose accumulation, Potato Res., 1990, vol. 33, no. 2, pp. 241–245. doi 10.1007/BF02358452CrossRefGoogle Scholar
  68. Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., and Fernie, A.R., Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems, Plant Cell, 2001, vol. 13, no. 1, pp. 11–29. doi 10.1105/tpc.13.1.11CrossRefPubMedPubMedCentralGoogle Scholar
  69. Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N., and Willmitzer, L., Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry, Plant J., 2000, vol. 23, no. 1, pp. 131–142. doi 10.1046/j.1365-313x.2000.00774.xCrossRefPubMedGoogle Scholar
  70. Ruan, C.J., Metabolomics: Creating new potentials for unraveling the mechanisms in response to salt and drought stress and for the biotechnological improvement of xerohalophytes, Crit. Rev. Biotechnol., 2011, vol. 31, no. 2, pp. 153–169. doi 10.3109/07388551.2010.505908CrossRefPubMedGoogle Scholar
  71. Sauter, H., Lauer, M., and Fritsch, H., Metabolic profiling of plants a new diagnostic technique, ACS Symp. Ser., 1991, vol. 443, pp. 288–299. doi 10.1021/bk-1991-0443.ch024CrossRefGoogle Scholar
  72. Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Perez-Melis, A., Bruedigam, C., Kopka, J., Willmitzer, L., Zamir, D., and Ferni, A.R., Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement, Nat. Biotechnol., 2006, vol. 24, no. 4, pp. 447–454. doi 10.1038/nbt1192CrossRefPubMedGoogle Scholar
  73. Shepherd, L.V., Fraser, P., and Stewart, D., Metabolomics: A second-generation platform for crop and food analysis, Bioanalysis, 2011, vol. 3, no. 10, pp. 1143–1159. doi 10.4155/bio.11.61CrossRefPubMedGoogle Scholar
  74. Shepherd, L.V., Hackett, C.A., Alexander, C.J., McNicol, J.W., Sungurtas, J.A., McRae, D., McCue, K.F., Belknap, W.R., and Davies, H.V., Impact of light-exposure on the metabolite balance of transgenic potato tubers with modified glycoalkaloid biosynthesis, Food Chem., 2016, vol. 200, pp. 263–273. doi 10.1016/j.foodchem.2015.12.095CrossRefPubMedGoogle Scholar
  75. Shepherd, L.V., Hackett, C.A., Alexander, C.J., McNicol, J.W., Sungurtas, J.A., Stewart, D., McCue, K.F., Belknap, W.R., and Davies, H.V., Modifying glycoalkaloid content in transgenic potato—Metabolome impacts, Food Chem., 2015, vol. 187, pp. 437–443. doi 10.1016/j.foodchem.2015.04.111CrossRefPubMedGoogle Scholar
  76. Shepherd, T., Dobson, G., Verrall, S., Conner, S., Griffiths, D., McNicol, J., Davies, H., and Stewart, D., Potato metabolomics by GC-MS: What are the limiting factors?, Metabolomics, 2007, vol. 3, no. 4, pp. 475–488. doi 10.1007/s11306-007-0058-2CrossRefGoogle Scholar
  77. Spooner, D.M., Ghislain, M., Simon, R., Jansky, S.H., and Gavrilenko, T., Systematics, diversity, genetics, and evolution of wild and cultivated potatoes, Bot. Rev., 2014, vol. 80, no. 4, pp. 283–383. doi 10.1007/s12229-014-9146-yCrossRefGoogle Scholar
  78. Stacklies, W., Redestig, H., Scholz, M., Walther, D., and Selbig, J., pcaMethods-a bioconductor package providing PCA methods for incomplete data, Bioinformatics, 2007, vol. 23, no. 9, pp. 1164–1167. doi 10.1093/bioinformatics/btm069CrossRefPubMedGoogle Scholar
  79. Stewart, D. and Shepherd, L.V.T., Metabolomics for the safety assessment of genetically modified (GM) crops, in Metabolomics in Food and Nutrition, Elsevier, 2013, pp. 192–216. doi 10.1533/9780857098818.2.192CrossRefGoogle Scholar
  80. Stewart, D., Shepherd, L.V.T., Hall, R., and Fraser, P., Crops and tasty, nutritious food–how can metabolomics help?, Annu. Plant Rev., 2011, vol. 43, pp. 181–217.Google Scholar
  81. Stushnoff, C., Ducreux, L.J., Hancock, R.D., Hedley, P.E., Holm, D.G., McDougall, G.J., McNicol, J.W., Morris, J., Morris, W.L., and Sungurtas, J.A., Flavonoid profiling and transcriptome analysis reveals new gene—metabolite correlations in tubers of Solanum tuberosum L., J. Exp. Bot., 2010, vol. 61, no. 4, pp. 1225–1238. doi 10.1093/jxb/erp394CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tauberger, E., Fernie, A.R., Emmermann, M., Renz, A., Kossmann, J., Willmitzer, L., and Trethewey, R.N., Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate, Plant J., 2000, vol. 23, no. 1, pp. 43–53. doi 10.1046/j.1365-313x.2000.00783.xCrossRefPubMedGoogle Scholar
  83. Tiessen, A., Nerlich, A., Faix, B., Hümmer, C., Fox, S., Trafford, K., Weber, H., Weschke, W., and Geigenberger, P., Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method, J. Exp. Bot., 2012, vol. 63, no. 5, pp. 2071–2087. doi 10.1093/jxb/err408CrossRefPubMedGoogle Scholar
  84. Trethewey, R.N., Krotzky, A.J., and Willmitzer, L., Metabolic profiling: A Rosetta Stone for genomics?, Curr. Opin. Plant Biol., 1999, vol. 2, no. 2, pp. 83–85. doi 10.1016/S1369-5266(99)80017-XCrossRefPubMedGoogle Scholar
  85. Truong, V.-D., Deighton, N., Thompson, R.T., McFeeters, R.F., Dean, L.O., Pecota, K.V., and Yencho, G.C., Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS, J. Agric. Food Chem., 2010, vol. 58, no. 1, pp. 404–410. doi 10.1021/jf902799aCrossRefPubMedGoogle Scholar
  86. Tweeddale, H., Notley-McRobb, L., and Ferenci, T., Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“Metabolome”) analysis, J. Bacteriol., 1998, vol. 180, no. 19, pp. 5109–5116.PubMedPubMedCentralGoogle Scholar
  87. Urbanczyk-Wochniak, E., Baxter, C., Kolbe, A., Kopka, J., Sweetlove, L.J., and Fernie, A.R., Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves, Planta, 2005, vol. 221, no. 6, pp. 891–903. doi 10.1007/s00425-005-1483-yCrossRefPubMedGoogle Scholar
  88. Uri, C., Juhász, Z., Polgár, Z., and Bánfalvi, Z., A GCMS-based metabolomics study on the tubers of commercial potato cultivars upon storage, Food Chem., 2014, vol. 159, pp. 287–292. doi 10.1016/j.foodchem.2014.03.010CrossRefPubMedGoogle Scholar
  89. van Eck, H.J., Jacobs, J.M., Stam, P., Ton, J., Stiekema, W.J., and Jacobsen, E., Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs, Genetics, 1994, vol. 137, no. 1, pp. 303–309.PubMedGoogle Scholar
  90. van Gelder, W.M.J., Chemistry, toxicology, and occurrence of steroidal glycoalkaloids: Potential contaminants of the potato (Solanum tuberosum L.), in Poisonous Plant Contamination of Edible Plants, Boca Raton, FL: Florida: CRC Press, 1990, pp. 117–156.Google Scholar
  91. Veramendi, J., Willmitzer, L., and Trethewey, R., In vitro grown potato microtubers are a suitable system for the study of transgenic lines altered in primary carbohydrate metabolism, Plant Physiol. Biochem., 1999, vol. 37, no. 9, pp. 693–697. doi 10.1016/S0981-9428(00)80100-XCrossRefGoogle Scholar
  92. Visser, R.G.F., Vreugdenhil, D., Hendriks, D., and Jacobsen, T., Gene expression and carbohydrate metabolism during stolon to tuber transition in potatoes (Solanum tuberosum L.), Physiol. Plant., 1994, vol. 90, no. 2, pp. 285–292. doi 10.1111/j.1399-3054.1994.tb00389.xCrossRefGoogle Scholar
  93. Weckwerth, W., Loureiro, M.E., Wenzel, K., and Fiehn, O., Differential metabolic networks unravel the effects of silent plant phenotypes, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 20, pp. 7809–7814. doi 10.1073/pnas.0303415101CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E.J., Edlund, U., Shockcor, J.P., Gottfries, J., Moritz, T., and Trygg, J., Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models, Anal. Chem., 2008, vol. 80, no. 1, pp. 115–122. doi 10.1021/ac0713510CrossRefPubMedGoogle Scholar
  95. Wink, M., Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective, Phytochemistry, 2003, vol. 64, no. 1, pp. 3–19. doi 10.1016/S0031-9422(03)00300-5CrossRefPubMedGoogle Scholar
  96. Wold, S., Sjöström, M., and Eriksson, L., PLS-regression: A basic tool of chemometrics, Chemometr. Intell. Lab., 2001, vol. 58, no. 2, pp. 109–130. doi 10.1016/S0169-7439(01)00155-1CrossRefGoogle Scholar
  97. Wolfender, J.L., Rudaz, S., Choi, Y.H., and Kim, H.K., Plant metabolomics: From holistic data to relevant biomarkers, Curr. Med. Chem., 2013, vol. 20, no. 8, pp. 1056–1090. doi 10.2174/0929867311320080009PubMedGoogle Scholar
  98. Yuzepchuk, S.V. and Bukasov, S.M., To the question of the origin of potatoes, Tr. Vsesoyuz. Sezda Genet. Sel. Semenovod. Plemennomu Zhivotnovod., 1929, vol. 3, pp. 593–611.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. K. Puzanskiy
    • 1
    • 2
  • V. V. Yemelyanov
    • 2
  • T. A. Gavrilenko
    • 1
    • 2
  • M. F. Shishova
    • 1
    • 2
  1. 1.Vavilov All-Russian Institute of Plant Genetic Resources (VIR)St. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations