Skip to main content
Log in

Plant stem cells: Unity and diversity

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Stem cells (SCs) are undifferentiated cells of multicellular organisms that can divide, self-renew, and differentiate. Despite the differences in their properties, the general principles of the existence of SCs can be distinguished in all multicellular organisms. In plants, SCs are found in meristems, structures that ensure the continuous growth of a plant and provide material for the formation of various specialized tissues. There are numerous types of meristems: shoot apical meristem (SAM) and root apical meristem (RAM), and lateral meristems (LMs) (procambium, cambium, and pericycle), as well as the so-called irregular meristems, developing under certain conditions (callus, meristems of symbiotic nodules, spontaneous and pathogen-induced tumors, etc.). Specific mechanisms of regulation, which are based on the interaction of plant hormones and the major groups of transcription factors, were identified for each meristem. The activity of meristems is determined by two opposing processes: proliferation and self-renewal of SCs in the central part of the meristem and differentiation of specialized cells in the periphery. WOX-CLAVATA systems are a regulatory component conservative for different meristems, which ensures the consistency of the composition of the meristem, as well as the balance of SC proliferation and differentiation. In this review, we consider the similarities and differences between the principles of the organization of SC niches in plants and animals, as well as in a variety of meristems of higher plants; special attention will be paid to the role of WOX-CLAVATA systems in maintaining meristems and their interaction with other meristem regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agusti, J., Lichtenberger, R., Schwarz, M., Nehlin, L., and Greb, T, Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth, PLoS Genet., 2011, vol. 7, no. 2. doi 10.1371/journal.pgen.1001312

  • Ahuja, M.R, Genetic tumors in Nicotiana and other plants, Q. Rev. Biol., 1998, vol. 73, pp. 439–459.

    Article  Google Scholar 

  • Anzola, J.M., Sieberer, T., Ortbauer, M., Butt, H., Korbei, B., Weinhofer, I., Müllner, A.E., and Luschnig, C, Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 22, pp. 10308–10313. doi 10.1073/pnas.0913918107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ariel, F., Brault-Hernandez, M., Laffont, C., Huault, E., Brault, M., Plet, J., Moison, M., Blanchet, S., Ichanté, J.L., Chabaud, M., Carrere, S., Crespi, M., Chan, R.L., and Frugier, F, Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula, Plant Cell Online, 2012, vol. 24, no. 9, pp. 3838–3852. doi 10.1105/tpc.112.103267

    Article  CAS  Google Scholar 

  • Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., Rech, P., and Chriqui, D, Pluripotency of Arabidopsis xylem pericycle underlies shootregeneration from root and hypocotyl explants grown in vitro, Plant J., 2009, vol. 57, no. 4, pp. 626–644. doi 10.1111/j.1365-313X.2008.03715.x

    Article  CAS  PubMed  Google Scholar 

  • Azarakhsh, M., Kirienko, A.N., Zhukov, V.A., Lebedeva, M.A., Dolgikh, E.A., and Lutova, L.A., KNOTTED1-LIKE HOMEOBOX 3: A new regulator of symbiotic nodu Le development, J. Exp. Bot., 2015, vol. 66, no. 22, pp. 7181–7195. doi 10.1093/jxb/erv414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beeckman, T., Burssens, S., and Inzé, D, The peri-cellcycle in Arabidopsis, J. Exp. Bot., 2001, vol. 52, pp. 403–411.

    CAS  PubMed  Google Scholar 

  • Belles-Boix, E., Hamant, O., Witiak, S.M., Morin, H., Traas, J., and Pautot, V., KNAT6: An Arabidopsis homeobox gene involved in meristem activity and organ separation, Plant Cell, 2006, vol. 18, no. 8, pp. 1900–1907.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berckmans, B., Vassileva, V., Schmid, S.P., Maes, S., Parizot, B., Naramoto, S., Magyar, Z., Alvim, KameiC.L., Koncz, C., Bögre, L., Persiau, G., De Jaeger, G., Friml, J., Simon, R., Beeckman, T., and De Veylder, L, Auxindependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins, Plant Cell, 2011, vol. 23, no. 10, pp. 3671–3683. doi 10.1105/tpc.111.088377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Betsuyaku, S., Takahashi, F., Kinoshita, A., Miwa, H., Shinozaki, K., Fukuda, H., and Sawa, S., Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis, Plant Cell Physiol., 2011, vol. 52, pp. 14–29. doi 10.1093/pcp/pcq157

    Article  CAS  PubMed  Google Scholar 

  • Bishopp, A., Help, H., El-Showk, S., Weijers, D., Scheres, B., Friml, J., Benková, E., Mähönen, A.P., and Helariutta, Y, A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots, Curr. Biol., 2011a, vol. 21, pp. 917–926. doi 10.1016/j.cub.2011.04.017

    Article  CAS  PubMed  Google Scholar 

  • Bishopp, A., Lehesranta, S., Vatén, A., Help, H., El-Showk, S., Scheres, B., Helariutta, K., Mähönen, A.P., Sakakibara, H., and Helariutta, Y, Phloemtransported cytokinin regulates polarauxintransport and maintains vascular pattern in the root meristem, Curr. Biol., 2011b, vol. 21, no. 11, pp. 927–932.

    Article  CAS  PubMed  Google Scholar 

  • Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B, The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots, Nature, 2005, vol. 433, pp. 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Boutilier, K., Offringa, R., Sharma, V.K., Kieft, H., Ouellet, T., Zhang, L., Hattori, J., Liu, C.-M., Van Lammeren, A.A.M., Miki, B.L.A., and Custers, J.B, Van lookeren campagne m.m. ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth, Plant Cell, 2002, vol. 14, pp. 1737–1749.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breuninger, H., Rikirsch, E., Hermann, M., Ueda, M., and Laux, T, Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo, Dev. Cell, 2008, vol. 14, pp. 867–876. doi 10.1016/j.devcel. 2008.03.008

    Article  CAS  PubMed  Google Scholar 

  • Busch, W., Miotk, A., Ariel, F.D., Zhao, Z., Forner, J., Daum, G., Suzaki, T., Schuster, C., Schultheiss, S.J., Leibfried, A., Haubeiss, S., Ha, N., Chan, R.L., and Lohmann, J.U, Transcriptional control of a plant stem cell niche, Dev. Cell, 2010, vol. 18, no. 5, pp. 849–861.

    Article  CAS  PubMed  Google Scholar 

  • Buzovkina, I.S. and Lutova, L.A, The genetic collection of radish inbred lines: History and prospects, Russ. J. Genet., 2007, vol. 43, no. 10, pp. 1181–1192.

    Article  CAS  Google Scholar 

  • Carlsbecker, A., Lee, J.Y., Roberts, C.J., Dettmer, J., Lehesranta, S., Zhou, J., Lindgren, O., Moreno-Risueno, M.A., Vaten, A., and Thitamadee, S, Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate, Nature, 2010, vol. 465, pp. 316–321. doi 10.1038/nature08977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chalupowicz, L., Barash, I., Panijel, M., Sessa, G., and Manulis-Sasson, S, Regulatory interactions between quorum- sensing, auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae, Mol. Plant Microbe Interact., 2009, vol. 22, pp. 849–856. doi 10.1094/MPMI-22-7-0849

    CAS  PubMed  Google Scholar 

  • Chang, L., Ramireddy, E., and Schmülling, T, Cytokinin as a positional cue regulating lateral root spacing in Arabidopsis, J. Exp. Bot., 2015, vol. 66, no. 15, pp. 4759–4768. doi 10.1093/jxb/erv252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, S., Lang, P., Chronis, D., Zhang, S., De Jong, W.S., Mitchum, M.G., and Wang, X, In planta processing and glycosylation of a nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-like effector and its interaction with a host CLAVATA2-like receptor to promote parasitism, Plant Physiol., 2015, vol. 167, no. 1, pp. 262–272. doi 10.1104/pp.114.251637

    Article  CAS  PubMed  Google Scholar 

  • Chen, S.-K., Kurdyukov, S., Kereszt, A., Wang, X.-D., Gresshoff, P.M., and Rose, R.J, The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula, Planta, 2009, vol. 230, pp. 827–840. doi 10.1007/s00425-009-0988-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chuck, C., Lincoln, C., and Hake, S., KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis, Plant Cell, 1996, vol. 8, pp. 1277–1289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung, K.R. and Tzeng, D.D, Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustillago esculenta, J. Biol. Sci., 2004, vol. 4, pp. 744–750. doi 10.3923/jbs.2004.744.750

    Article  CAS  Google Scholar 

  • Crespi, M. and Frugier, F, De novo organ formation from differentiated cells: Root nodule organogenesis, Sci. Signal., 2008, vol. 1, no. 49. doi 10.1126/scisignal.149re11

  • Cruz-Ramírez, A., Díaz-Triviño, S., Wachsman, G., Du, Y., Arteagá-Vázquez, M., Zhang, H., Benjamins, R., Blilou, I., Neef, A.B., Chandler, V., and Scheres, B., A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis ?root stem cell organizer, PLoS Biol., 2013, vol. 11, no. 11. doi 10.1371/journal. pbio.1001724

  • Cui, H., Hao, Y., Kovtun, M., Stolc, V., Deng, X.W., Sakakibara, H., and Kojima, M, Genome-wide direct target analysis reveals a role for SHORTROOT in root vascular patterning through cytokinin homeostasis, Plant Physiol., 2011, vol. 157, pp. 1221–1231. doi 10.1104/pp.111.183178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Almeida Engler, J. and Gheysen, G, Nematodeinduced endoreduplication in plant host cells: Why and how?, Mol. Plant Microbe Interact., 2013, vol. 6, pp. 17–24. doi 10.1094/MPMI-05-12-0128-CR

    Article  CAS  Google Scholar 

  • De Buck, S., De Wilde, C., Van Montagu, M., and Depicker, A, Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants, Mol. Plant Microbe Interact., 2000, vol. 13, pp. 658–665.

    Article  PubMed  Google Scholar 

  • De Lillo, E. and Monfreda, R, Salivary secretions’ of eriophyoids (Acari: Eriophyoidea): First results of an experimental model, Exp. Appl. Acarol., 2004, vol. 34, nos. 3–4, pp. 291–306.

    PubMed  Google Scholar 

  • De Rybel, B., Vassileva, V., Parizot, B., Demeulenaere, M., Grunewald, W., Audenaert, D., Van Campenhout, J., Overvoorde, P., Jansen, L., Vanneste, S., Möller, B., Wilson, M., Holman, T., Van Isterdael, G., Brunoud, G., et al., A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity, Curr. Biol., 2010, vol. 20, pp. 1697–1706. doi 10.1016/j.cub.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  • De Smet, I., Vanneste, S., Inzé, D., and Beeckman, T, Lateral root initiation or the birth of a new meristem, Plant. Mol. Biol., 2006, vol. 60, pp. 871–887.

    Article  CAS  PubMed  Google Scholar 

  • Devos, S., Laukens, K., Deckers, P., Van Der Straeten, D., Beeckman, T., Inzé, D., Van Onckelen, H., Witters, E., and Prinsen, E, A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis, Mol. Plant Microbe Interact., 2006, vol. 19, pp. 1431–1443.

    Article  CAS  PubMed  Google Scholar 

  • Dodueva, I.E., Frolova, N.V., and Lutova, L.A, Plant tumorigenesis: Different ways for shifting systemic control of plant cell division and differentiation, Transgen., Plant J., 2007, vol. 1, pp. 3–24.

    Google Scholar 

  • Dodueva, I.E., Gancheva, M.S., Osipova, M.A., Tvorogova, V.E., and Lutova, L.A, Lateral meristems of higher plants: Phytohormonal and genetic control, Fiziol. Rast., 2014, vol. 61, no. 5, pp. 611–631.

    Google Scholar 

  • Dolzblasz, A., Nardmann, J., Clerici, E., Causier, B., van der Graaff, E., Chen, J., Davies, B., Werr, W., and Laux, T., Mol. Plant, 2016, vol. 9, no. 7, pp. 1028–1039. doi 10.1016/j.molp.2016.04.007

  • Dubrovsky, J.G., Doerner, P.W., Colón-Carmona, A., and Rost, T.L, Pericycle cell proliferation and lateral root initiation in Arabidopsis, Plant Physiol., 2000, vol. 124, pp. 1648–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F., and Bowman, J.L, Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes, Curr. Biol., 2003, vol. 13, pp. 1768–1774.

    Article  CAS  PubMed  Google Scholar 

  • Etchells, J.P. and Turner, S.R, The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division, Development, 2010, vol. 137, pp. 767–774. doi 10.1242/dev.044941

    Article  CAS  PubMed  Google Scholar 

  • Etchells, J.P., Provost, C.M., and Turner, S.R, Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling, PLoS Genet., 2012, vol. 8, no. 11.

  • Etchells, J.P., Provost, C.M., Mishra, L., and Turner, S.R., WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organization, Development, 2013, vol. 140, pp. 2224–2234. doi 10.1242/dev.091314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman, L.J, The de novo origin of the quiescent center regenerating root apices in Zea mays, Planta, 1976, vol. 128, no. 3, pp. 207–212. doi 10.1007/BF00393230

    Article  CAS  PubMed  Google Scholar 

  • Fiers, M., Hause, G., Boutilier, K., Casamitjana-Martinez, E., Weijers, D., Offringa, R., van der Geest, L., Van Lookeren Campagne, M., and Liu, C.M, Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem, Gene, 2004, vol. 327, no. 1, pp. 37–49.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, K. and Turner, S., PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development, Curr. Biol., 2007, vol. 17, pp. 1061–1066.

    Article  CAS  PubMed  Google Scholar 

  • Frank, M., Guiv’Arch, A., Krupkova, E., Lorenz-Meyer, I., Chriqui, D., and Schmulling, T., TUMOROUS SHOOT DEVELOPMENT (TSD) genes are required for co-ordinated plant shoot development, Plant J., 2002, vol. 29, pp. 73–85.

    Article  CAS  PubMed  Google Scholar 

  • Gagne, J.M. and Clark, S.E, The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated, Plant Cell, 2010, vol. 22, pp. 729–743. doi 10.1105/tpc.109.068734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallois, J.-L., Nora, F.R., Mizukami, Y., and Sablowski, R., WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem, Gen. Dev., 2004, vol. 18, pp. 375–380.

    Article  CAS  Google Scholar 

  • Gambino, G., Minuto, M., Boccacci, P., Perrone, I., Vallania, R., and Gribaudo, I, Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera, J. Exp. Bot., 2011, vol. 62, pp. 1089–1101. doi 10.1093/jxb/erq349

    Article  CAS  PubMed  Google Scholar 

  • Garfinkel, D.J., Simpson, R.B., Ream, L.W., White, F.F., Gordon, M.P., and Nester, E.W, Genetic analysis of crown gall: Fine structure map of the T-DNA by site-directed mutagenesis, Cell, 1981, vol. 27, pp. 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Giron, D. and Glevarec, G., Cytokinin-induced phenotypes in plant-insect interactions: Learning from the bacterial world, J. Chem. Ecol., 2014, vol. 40, no. 7, pp. 826–835.

    Article  CAS  PubMed  Google Scholar 

  • Glass, N.L. and Kosuge, T, Role of indoleacetic acidlysine synthetase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. savastanoi, J. Bacteriol., 1988, vol. 170, no. 5, pp. 2367–2373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Rizzo, S., Crespi, M., and Frugier, F, The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti, Plant Cell Online, 2006, vol. 18, no. 10, pp. 2680–2693.

    Article  CAS  Google Scholar 

  • Gonzali, S., Novi, G., Loreti, E., Paolicchi, F., Poggi, A., Alpi, A., and Perata, P, A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana, Plant J., 2005, vol. 44, pp. 633–645.

    Article  CAS  PubMed  Google Scholar 

  • Gursanscky, N.R., Jouannet, V., Grünwald, K., Sanchez, P., Laaber-Schwarz, M., and Greb, T., MOL1 is required for cambium homeostasis in Arabidopsis, Plant J., 2016, vol. 17. doi 10.1111/tpj.13169

  • Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., and Laux, T, Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana, Development, 2004, vol. 131, no. 3, pp. 657–668.

    Article  CAS  PubMed  Google Scholar 

  • Heidstra, R. and Sabatini, S, Plant and animal stem cells: Similary et different, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, no. 5, pp. 301–312. doi 10.1038/nrm3790

    Article  CAS  PubMed  Google Scholar 

  • Hinsch, J., Vrabka, J., Oeser, B., Novák, O., Galuszka, P., and Tudzynski, P, De novo biosynthesis of cytokinins in the biotrophic fungus Clavicepspurpurea, Environ. Microbiol., 2015, vol. 17, no. 8, pp. 2935–2951. doi 10.1111/1462- 2920.12838

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa, Y., Kondo, Y., and Fukuda, H., TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis, Plant Cell, 2010, vol. 22, pp. 2618–2629. doi 10.1105/tpc.110.076083

    Article  CAS  Google Scholar 

  • Hirakawa, Y., Shinohara, H., Kondo, Y., Inoue, A., Nakanomyo, I., Ogawa, M., and Sakagami, Y., Non-cellautonomous control of vascular stem cell fate by a CLE peptide/receptor system, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 15208–15213. doi 10.1073/pnas.0808444105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobe, M., Muller, R., Grunewald, M., Brand, U., and Simon, R, Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis, Dev. Genes Evol., 2003, vol. 213, pp. 371–381.

    CAS  PubMed  Google Scholar 

  • Huang, G.Z., Dong, R.H., Allen, R., Davis, E.L., Baum, T.J., and Hussey, R.S, A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor, Mol. Plant Microbe Interact., 2006, vol. 19, pp. 463–470.

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi, M., Sugimoto, K., and Iwase, A, Plantcallus: Mechanisms of induction and repression, Plant Cell, 2013, vol. 25, no. 9, pp. 3159–3173. doi 10.1105/tpc.113.116053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilegems, M., Douet, V., Meylan-Bettex, M., Uyttewaal, M., Brand, L., Bowman, J.L., and Stieger, P.A, Interplay of auxin,KANADI and Class III HD-ZIP transcription factors in vascular tissue formation, Development, 2010, vol. 137, no. 6, pp. 975–984. doi 10.1242/dev.047662

    Article  CAS  PubMed  Google Scholar 

  • Intrieri, M.C. and Buiatti, M, The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana, Mol. Phylogen. Evol., 2001, vol. 20, pp. 100–110.

    Article  CAS  Google Scholar 

  • Ito, Y., Nakanomyo, I., Motose, H., Iwamoto, K., Sawa, S., Dohmae, N., and Fukuda, H, Dodeca-CLE peptides as suppressors of plant stem cell differentiation, Science, 2006, vol. 313, pp. 842–845.

    Article  CAS  PubMed  Google Scholar 

  • Ivanov, V.B, Stem cells in the root and the problem of stem cells in plants, Russ. J. Dev. Biol., 2007, vol. 38, no. 6, pp. 338–349.

    Article  Google Scholar 

  • Ivanov, V.B, The problem of stem cells in plants, Russ. J. Dev. Biol., 2003, vol. 34, no. 4, pp. 205–212.

    Article  Google Scholar 

  • Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., and Tsiantis, M., KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities, Curr. Biol., 2005, vol. 15, pp. 1560–1565.

    Article  CAS  PubMed  Google Scholar 

  • Ji, J., Shimizu, R., Sinha, N., and Scanlon, M.J, Analyses of WOX4 transgenics provide further evidence for the evolution of the WOX gene family during the regulation of diverse stem cell functions, Plant Signal Behav., 2010b, vol. 5, no. 7, pp. 916–920. doi 10.1104/pp.109.149641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, J., Strable, J., Shimizu, R., Koenig, D., Sinha, N., and Scanlon, M.J., WOX4 promotes procambial development, Plant Physiol., 2010a, vol. 152, no. 3, pp. 1346–1356. doi 10.1104/pp.109.149641

  • Jiang, F., Feng, Z., Liu, H., and Zhu, J, Involvement of plant stem cells or stem cell-like cells in dedifferentiation, Front. Plant Sci., 2015, vol. 6, p. 1028. doi 10.3389/fpls.2015.01028

    PubMed  PubMed Central  Google Scholar 

  • Klimaszewska, K., Overton, C., Stewart, D., and Rutledge, R.G, Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process, Planta, 2011, vol. 233, pp. 635–647. doi 10.1007/s00425-010-1325-4

    Article  CAS  PubMed  Google Scholar 

  • Kondo, T., Sawa, S., Kinoshita, A., Mizuno, S., Kakimoto, T., Fukuda, H., and Sakagami, Y, A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MSanalysis, Science, 2006, vol. 313, pp. 845–848.

    Article  CAS  PubMed  Google Scholar 

  • Kosan, C. and Godmann, M, Genetic and epigenetic mechanisms that maintain hematopoietic stem cell function, Stem Cells Int., 2016, vol. 2016, p. 5178965. doi 10.1155/2016/5178965

    Article  PubMed  Google Scholar 

  • Kosugi, S. and Ohashi, Y, Constitutive E2F expression in tobacco plants exhibits altered cell cycle control and morphological change in a cell type-specific manner, Plant Physiol., 2003, vol. 132, no. 4, pp. 2012–2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupková, E. and Schmúlling, T, Developmental consequences of the timorous shoot development1 mutation, a novel allele of the cellulose-synthesizing KORRIGAN1 gene, Plant. Mol. Biol., 2009, vol. 71, no. 6, pp. 641–655. doi 10.1007/s11103-009-9546-2

    PubMed  Google Scholar 

  • Kurdyukov, S., Song, Y., Sheahan, M.B., and Rose, R.J, Transcriptional regulation of early embryo development in the model legume Medicago truncatula, Plant Cell Rep., 2014, vol. 33, pp. 349–362. doi 10.1007/s00299-013-1535-x

    Article  CAS  PubMed  Google Scholar 

  • Lebedeva (Osipova), M.A., Tvorogova, V.E., Vinogradova, A.P., Gancheva, M.S., Azarakhsh, M., Ilina, E.L., Demchenko, K.N., Dodueva, I.E., and Lutova, L.A, Initiation of spontaneous tumors in radish (Raphanus sativus): Cellular, molecular and physiological events, J. Plant Physiol., 2015, vol. 173, pp. 97–104. doi 10.1016/j.jplph.2014.07.030

    PubMed  Google Scholar 

  • Lee, J.H., Kim, D.M., Lim, Y.P., and Pai, H.S, The shooty callus induced by suppression of tobacco CHRK1 receptor-like kinase is a phenocopy of the tobacco genetic tumor, Plant Cell Rep., 2004, vol. 23, no. 6, pp. 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Leibfried, A., To, J.P., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J.J., and Lohmann, J.U., WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators, Nature, 2005, vol. 438, pp. 1172–1175.

    Article  CAS  PubMed  Google Scholar 

  • Lenhard, M. and Laux, T, Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1, Development, 2003, vol. 130, pp. 3163–3173.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H., Niu, L., McHale, N.A., Ohme-Takagi, M., Mysore, K.S., and Tadege, M, Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 1, pp. 366–371.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Sheng, L., Xu, Y., Li, J., Yang, Z., Huang, H., and Xu, L., WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis, Plant Cell, 2014, vol. 26, pp. 1081–1093. doi 10.1105/tpc.114.122887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, J.A., Moan, E.I., Medford, J.J., and Barton, M.K, A member of the KNOTTED class of homeodomain proteins encoded by the SHOOT-MERISTEMLESS gene of Arabidopsis, Nature, 1996, vol. 379, pp. 66–69.

    Article  CAS  PubMed  Google Scholar 

  • Lotan, T., Ohto, M., Yee, K.M., West, M.A.L., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B., and Harada, J.J, Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells, Cell, 1998, vol. 93, pp. 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S.W., Chen, S., Wang, J., Yu, H., Chronis, D., Mitchum, M.G., and Wang, X, Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis, Mol. Plant Microbe Interact., 2009, vol. 22, no. 9, pp. 1128–1142. doi 10.1094/MPMI-22-9-1128

    Article  CAS  PubMed  Google Scholar 

  • Lutova, L.A., Dolgikh, E.A., Dodueva, I.E., Osipova, M.A., and Ilina, E.L, Investigation of systemic control of plant cell division and differentiation in the model of tumor growth in radish, Russ. J. Genet., 2008, vol. 44, no. 8, pp. 936–943.

    Article  CAS  Google Scholar 

  • Mähönen, A.P., Bonke, M., Kauppinen, L., Riikonen, M., Benfey, P.N., and Helariutta, Y, A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root, Genet. Dev., 2000, vol. 14, no. 23, pp. 2938–2943.

    Article  Google Scholar 

  • Mähönen, A.P., Higuchi, M., Törmä kangas, K., Miyawaki, K., Pischke, M.S., Sussman, M.R., Helariutta, Y., and Kakimoto, T, Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis, Curr. Biol., 2006, vol. 16, pp. 1116–1122.

    Article  PubMed  CAS  Google Scholar 

  • Mathesius, U., Weinman, J.J., Rolfe, B.J., and Djordjevic, M.A, Rhizobia can induce nodules in white clover by “hijacking” mature cortical cells activated during lateral root development, Mol. Plant Microbe Interact., 2000, vol. 13, pp. 170–182.

    Article  CAS  PubMed  Google Scholar 

  • Matveeva, T.V., Frolova, N.V., Smets, R., Dodueva, I.E., Buzovkina, I.S., Van Onckelen, H., and Lutova, L.A, Hormonal control of tumor formation in radish, J. Plant Growth Regul., 2004, vol. 23, pp. 37–43.

    Article  CAS  Google Scholar 

  • Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., and Laux, T, Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem, Cell, 1998, vol. 95, no. 6, pp. 805–815.

    Article  CAS  PubMed  Google Scholar 

  • Mohrin, M., Bourke, E., Alexander, D., Warr, M.R., Barry-Holson, K., Le Beau, M.M., Morrison, C.G., and Passegué, E, Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis, Cell Stem Cell, 2010, vol. 7, no. 2, pp. 174–185. doi 10.1016/j.stem.2010.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortier, V., Herder, G., Whitford, R., Van De Velde, W., and Rombauts, S., D’Haeseleer, K., Holsters, M., and Goormachtig, S., CLE peptides control Medicago truncatula nodulation locally and systemically, Plant Physiol., 2010, vol. 153, pp. 222–237. doi 10.1104/pp.110.153718

  • Nardmann, J. and Werr, W, Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches, New Phytol., 2013, vol. 199, pp. 1081–1092. doi 10.1111/nph.12343

    Article  CAS  PubMed  Google Scholar 

  • Nardmann, J., Reisewitz, P., and Werr, W, Discrete shoot and root stem cellpromoting WUS/WOX5 functions are an evolutionary innovation of angiosperms, Mol. Biol. Evol., 2009, vol. 26, pp. 1745–1755. doi 10.1093/molbev/msp084

    Article  CAS  PubMed  Google Scholar 

  • Ohmori, Y., Tanaka, W., Kojima, M., Sakakibara, H., and Hirano, H.Y., WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice, Plant Cell, 2013, vol. 25, no. 1, pp. 229–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka-Kira, E. and Kawaguchi, M., Long-distance signaling to control root nodule number, Curr. Opin. Plant Biol., 2006, vol. 9, pp. 496–502.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, S., Ohnishi, E., Sato, S., Takahashi, H., Nakazono, M., Tabata, S., and Kawaguchi, M, Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation, Plant Cell Physiol., 2009, vol. 50, no. 1, pp. 67–77. doi 10.1093/pcp/pcn194

    Article  CAS  PubMed  Google Scholar 

  • Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., and Tasaka, M., ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis, Plant Cell, 2007, vol. 19, no. 1, pp. 118–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okushima, Y., Mitina, I., Quach, H.L., and Theologis, A., AUXIN RESPONSE FACTOR 2 (ARF2): A pleiotropic developmental regulator, Plant J., 2005, vol. 43, pp. 29–46.

    Article  CAS  PubMed  Google Scholar 

  • Op den Camp, R.H., De Mita, S., Lillo, A., Cao, Q., Limpens, E., Bisseling, T., and Geurts, R, A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators, Plant Physiol., 2011, vol. 157, no. 4, pp. 2013–2022. doi 10.1104/pp.111.187526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osipova, M.A., Dolgikh, E.A., and Lutova, L.A, Peculiarities of meristem-specific WOX5 gene expression during nodule organogenesis in legumes, Russ. J. Dev. Biol., 2011, vol. 42, pp. 226.

    Article  CAS  Google Scholar 

  • Osipova, M.A., Mortier, V., Demchenko, K.N., Tsyganov, V.E., Tikhonovich, I.A., Lutova, L.A., Dolgikh, E.A., and Goormachtig, S., WUSCHEL-RELATED HOMEOBOX5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation, Plant Physiol., 2012, vol. 158, pp. 1329–1341. doi 10.1104/pp.111.188078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palovaara, J., Hallberg, H., Stasolla, C., Luit, B., and Hakman, I, Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues, Tree Physiol., 2010, vol. 30, pp. 479–489. doi 10.1093/treephys/tpp126

    Article  CAS  PubMed  Google Scholar 

  • Parizot, B., Laplaze, L., Ricaud, L., Boucheron-Dubuisson, E., Bayle, V., Bonke, M., De Smet, I., Poethig, S.R., Helariutta, Y., Haseloff, J., Chriqui, D., Beeckman, T., and Nussaume, L, Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation, Plant Physiol., 2008, vol. 146, pp. 140–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parizot, B., Roberts, I., Raes, J., Beeckman, T., and De Smet, I, In silico analyses of pericycle cell populations reinforce their relation with associated vasculature in Arabidopsis, Philos. Trans. R. Soc. B. Biol. Sci., 2012, vol. 367, pp. 1479–1488. doi 10.1098/rstb.2011.0227

    Article  CAS  Google Scholar 

  • Pautot, V., Dockx, J., Hamant, O., Kronenberger, J., Grandjean, O., Jublot, D., and Traas, J., KNAT2: Evidence for a link between knotted-like genes and carpel development, Plant Cell, 2001, vol. 13, no. 8, pp. 1719–1734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plet, J., Wasson, A., Ariel, F., Le Signor, C., Baker, D., Mathesius, U., Crespi, M., and Frugier, F., MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula, Plant J., 2011, vol. 65, no. 4, pp. 622–633. doi 10.1111/j.1365-313X.2010.04447.x

    Article  CAS  PubMed  Google Scholar 

  • Reineke, G., Heinze, B., Schirawski, J., Buettner, H., Kahmann, R., and Basse, C.W., Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilagomaydis and its relevance for increased IAA levels in infected tissue and host tumour formation, Mol. Plant Pathol., 2008, vol. 9, pp. 339–355.

    Article  CAS  PubMed  Google Scholar 

  • Replogle, A., Wang, J., Bleckmann, A., Hussey, R.S., Baum, T.J., Sawa, S., Davis, E.L., Wang, X., Simon, R., and Mitchum, M.G, Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE, Plant J., 2011, vol. 65, pp. 430–440. doi 10.1111/j.1365-313X.2010.04433.x

    Article  CAS  PubMed  Google Scholar 

  • Santiago, J., Henzler, C., and Hothorn, M, Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases, Science, 2013, vol. 341, pp. 889–892. doi 10.1126/science.1242468

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, A.K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., and Laux, T, Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers, Nature, 2007, vol. 446, no. 7137, pp. 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Scheres, B., Wolkenfelt, H., Willemsen, V., Terlouw, M., Lawson, E., Dean, C., and Weisbeek, P, Embryonic origin of the Arabidopsis primary root and root meristem initials, Development, 1994, vol. 120, pp. 2475–2487.

    CAS  Google Scholar 

  • Schnabel, E., Journet, E.P., De Carvalho-Niebel, F., Duc, G., and Frugoli, J, The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length, Plant. Mol. Biol., 2005, vol. 58, no. 6, pp. 809–822.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, R, The relationship between the spleen colonyforming cell and the haemopoietic stem cell, Blood Cells, 1978, vol. 4, pp. 7–25.

    CAS  PubMed  Google Scholar 

  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jürgens, G., and Laux, T, The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes, Cell, 2000, vol. 100, pp. 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Schrader, J., Nilsson, J., Mellerowicz, E., Berglund, A., Nilsson, P., Hertzberg, M., and Sandberg, G, A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity, Plant Cell, 2004, vol. 16, pp. 2278–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searle, I.R., Men, A.E., Laniya, T.S., Buzas, D.M., Iturbe-Ormaetxe, I., Carroll, B.J., and Gresshoff, P.M., Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase, Science, 2003, vol. 299, pp. 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Sieberer, T., Hauser, M.T., Seifert, G.J., and Luschnig, C., PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation, Curr. Biol., 2003, vol. 13, pp. 837–842.

    Article  CAS  PubMed  Google Scholar 

  • Skoog, F. and Miller, C.O, Chemical regulation of growth and organ formation in plant tissues cultured in vitro, Symp. Soc. Exp. Biol., 1957, vol. 11, pp. 118–130.

    CAS  PubMed  Google Scholar 

  • Stahl, Y., Wink, R.H., Ingram, G.C., and Simon, R, A signaling module controlling the stem cell niche in Arabidopsis root meristems, Curr. Biol., 2009, vol. 19, pp. 909–914. doi 10.1016/j.cub.2009.03.060

    Article  CAS  PubMed  Google Scholar 

  • Su, Y.H., Liu, Y.B., Bai, B., and Zhang, X.S, Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis, Front. Plant Sci., 2015, vol. 14, no. 5, p. 792.

    Google Scholar 

  • Su, Y.H., Zhao, X.Y., Liu, Y.B., Zhang, C.L., O’Neill, S.D., and Zhang, X.S, Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis, Plant J., 2009, vol. 59, no. 3, pp. 448–460. doi 10.1111/j.1365-313X.2009.03880.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suer, S., Agusti, J., Sanchez, P., Schwarz, M., and Greb, T., WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis, Plant Cell, 2011, vol. 23, pp. 3247–3259. doi 10.1105/tpc.111.087874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, K., Jiao, Y., and Meyerowitz, E.M, Arabidopsis regeneration from multiple tissues occurs via a root development pathway, Dev. Cell, 2010, vol. 18, no. 3, pp. 463–471. doi 10.1016/j.devcel.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  • Suzaki, T., Yano, K., Ito, M., Umehara, Y., Suganuma, N., and Kawaguchi, M, Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicas is accompanied by auxin response, Development, 2012, vol. 139, no. 21, pp. 3997–4006. doi 10.1242/dev.084079

    Article  CAS  PubMed  Google Scholar 

  • Testone, G., Bruno, L., Condello, E., Chiappetta, A., Bruno, A., Mele, G., Tartarini, A., Spanò, L., Innocenti, A.M., Mariotti, D., Bitonti, M.B., and Giannino, D, Peach [Prunuspersica (L.) Batsch] KNOPE1, a class 1 KNOX orthologue to Arabidopsis BREVIPEDICELLUS/KNAT1, is misexpressed during hyperplasia of leaf curl disease, J. Exp. Bot., 2008, vol. 59, pp. 389–402.

    CAS  Google Scholar 

  • Timmers, A., Auriac, M.-C., and Truchet, G, Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements, Development, 1999, vol. 126, no. 16, pp. 3617–3628.

    CAS  PubMed  Google Scholar 

  • Tooker, J.F. and Helms, A.M, Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit, J. Chem. Ecol., 2014, vol. 40, no. 7, pp. 742–753.

    CAS  PubMed  Google Scholar 

  • Trotochaud, A.E., Hao, T., Wu, G., Yang, Z., and Clark, S.E, The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein, Plant Cell, 1999, vol. 11, pp. 393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trumpp, A., Essers, M., and Wilson, A, Awakening dormant haematopoietic stem cells, Nat. Rev. Immunol., 2010, vol. 10, no. 3, pp. 201–209. doi 10.1038/nri2726

    Article  CAS  PubMed  Google Scholar 

  • Ueda, M., Zhang, Z., and Laux, T, Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development, Dev. Cell, 2011, vol. 15, pp. 264–270. doi 10.1016/j.devcel.2011.01.009

    Article  CAS  Google Scholar 

  • Ullrich, C.I. and Aloni, R, Vascularization is a general requirement for growth of plant and animal tumours, J. Exp. Bot., 2000, vol. 51, no. 353, pp. 1951–1960.

    Article  CAS  PubMed  Google Scholar 

  • van der Graaff, E., Laux, T., and Rensing, S.A, The WUS homeobox-containing (WOX) protein family, Gen. Biol., 2009, vol. 10, no. 12, p. 248. doi 10.1186/gb-2009-10-12-248

    Article  CAS  Google Scholar 

  • Vandeputte, O., Oden, S., Mol, A., Vereecke, D., Goethals, K., El Jaziri, M., and Prinsen, E, Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues, Appl. Environ. MicroBiol., 2005, vol. 71, pp. 1169–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanstraelen, M., Baloban, M., Ines, O., Cultrone, A., Lammens, T., Boudolf, V., Brown, S.C., De Veylder, L., Mergaert, P., and Kondorosi, E., APC/C-CCS52A complexes control meristem maintenance in the Arabidopsis root, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 28, pp. 11806–11811. doi 10.1073/pnas.0901193106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veselov, D., Langhans, M., Hartung, W., Aloni, R., Feussner, I., Gö tz, C., Veselova, S., Schlomski, S., Dickler, C., Bächmann, K., and Ullrich, C.I, Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid, Planta, 2003, vol. 216, no. 3, pp. 512–522.

    CAS  PubMed  Google Scholar 

  • Vinogradova, A.P., Lebedeva, M.A., and Lutova, L.A, Meristematic characteristics of tumors initiated by Agrobacterium tumefaciens in pea plants, Russ. J. Genet., 2015, vol. 51, no. 1, pp. 46–54.

    Article  CAS  Google Scholar 

  • Wang, J., Replogle, A., Hussey, R., Baum, T., Wang, X., Davis, E.L., and Mitchum, M.G, Identification of potential host plant mimics of CLAVATA3/ESR (CLE)-like peptides from the plant-parasitic nematode Heterodera schachtii, Mol. Plant Pathol., 2011, vol. 12, no. 2, pp. 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Mitchum, M.G., Gao, B., Li, C., Diab, H., Baum, T.J., Hussey, R.S., and Davis, E.L, A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA/ESR (CLE) of Arabidopsis thaliana, Mol. Plant Pathol., 2005, vol. 6, pp. 187–191.

    Article  PubMed  Google Scholar 

  • Whitford, R., Fernandez, A., De Groodt, R., Ortega, E., and Hilson, P, Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 18625–18630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, A., Laurenti, E., Oser, G., van der Wath, R.C., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, C.F., Eshkind, L., Bockamp, E., Lio, P., Macdonald, H.R., and Trumpp, A, Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair, Cell, 2008, vol. 135, no. 6, pp. 1118–1129.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, R.K., Perales, M., Gruel, J., Girke, T., Jö nsson, H., and Reddy, G.V., WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex, Gen. Dev., 2011, vol. 25, pp. 2025–2030. doi 10.1101/gad.17258511

    Article  CAS  Google Scholar 

  • Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A., and Ori, N, Arabidopsis KNOXI proteins activate cytokinin biosynthesis, Curr. Biol., 2005, vol. 15, pp. 1566–1571.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Wang, Y., Li, G., Tang, Y., Kramer, E.M., and Tadege, M., STENOFOLIA recruits TOPLESS to repress ASYMMETRIC LEAVES2 at the leaf margin and promote leaf blade outgrowth in Medicago truncatula, Plant Cell, 2014, vol. 26, no. 2, pp. 650–664. doi 10.1105/tpc.113.121947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Q., Zheng, Y., and Perry, S.E., AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response, Plant Physiol., 2013, vol. 161, pp. 2113–2127. doi 10.1104/pp.113.216275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Liu, X., Engstrom, E.M., Nimchuk, Z.L., Pruneda-Paz, J.L., Tarr, P.T., Yan, A., Kay, S.A., and Meyerowitz, E.M, Control of plant stem cell function by conserved interacting transcriptional regulators, Nature, 2015, vol. 517, no. 7534, pp. 377–380. doi 10.1038/nature13853

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman, J.L., Somatic embryogenesis: A model for early development in higher plants, Plant Cell, 1993, vol. 5, no. 10, pp. 1411–1423.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Dodueva.

Additional information

Original Russian Text © I.E. Dodueva, V.E. Tvorogova, M. Azarakhsh, M.A. Lebedeva, L.A. Lutova, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 4, pp. 441–458.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodueva, I.E., Tvorogova, V.E., Azarakhsh, M. et al. Plant stem cells: Unity and diversity. Russ J Genet Appl Res 7, 385–403 (2017). https://doi.org/10.1134/S2079059717040025

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717040025

Keywords

Navigation