Skip to main content
Log in

Comparison of natural and artificial vasopressin deficiency: Why is the latter lethal?

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The transgenic mouse technology is widespread in the analysis of physiological functions; however, until now 22.0% of the tested null mutations were found to be lethal. The complete lack of vasopressin (AVP) also resulted in preweaning lethality. It is surprising to take into consideration the viability of the AVP natural mutant Brattleboro rats. Thus, AVP is crucial for survival, but it remains unclear which of its different roles is the most important. AVP exerts its effect through specific plasma membrane receptors. The V1a receptors can induce vasoconstriction maintaining blood pressure during hypovolaemia. The V1b receptor on the anterior pituitary has a role in stress adaptation. The V2 subtype is located in the kidney and contributes to the antidiuresis. The avp gene consists of a signal peptide, AVP, neurophysin 2 and a C-terminal glycopeptide. The naturally occurring AVP-deficient Brattleboro rat has a framshift mutation in the neurophysin portion resulting in central insipidus diabetes. In its hypothalamus AVP is not produced, while in certain peripheral tissues, it may be expressed, suggesting the existence of a different synthetic pathway. The avp knockout mice can also be produced; they will be born, but without the peripheral AVP administration, they will not survive. Comparing the available knockout models, we can conclude that the combined V1a and V2 receptormediated effects, namely, hypotension and water loss, may together led to lethality. As in the Brattleboro and targeted knockout mice the local synthesis of AVP in the heart can be maintained and AVP can be released into the general circulation. Thus, in these animals vasoconstriction can compensate the hypovolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babey, M., Kopp, P., and Robertson, G.L., Familial forms of diabetes insipidus: clinical and molecular characteristics, Nat. Rev. Endocrinol., 2011, vol. 7, pp. 701–714.

    Article  CAS  PubMed  Google Scholar 

  • Bielsky, I.F., Hu, S.B., Szegda, K.L., Westphal, H., and Young, L.J., Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice, Neuropsychopharmacology, 2004, vol. 29, pp. 483–493.

    Article  CAS  PubMed  Google Scholar 

  • Carrazana, E.J., Pasieka, K.B., and Majzoub, J.A., The vasopressin mRNA poly(A) tract is unusually long and increases during stimulation of vasopressin gene expression in vivo, Mol. Cell. Biol., 1988, vol. 8, pp. 2267–2274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J. and Aguilera, G., Vasopressin protects hippocampal neurones in culture against nutrient deprivation or glutamate- induced apoptosis, J. Neuroendocrinol., 2010, vol. 22, pp. 1072–1081.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Q., Patel, R., Sales, A., Oji, G., Kim, J., Monreal, A.W., and Brinton, R.D., Vasopressin-induced neurotrophism in cultured neurons of the cerebral cortex: Dependency on calcium signaling and protein kinase C activity, Neuroscience, 2000, vol. 101, pp. 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Egashira, N., Tanoue, A., Higashihara, F., Mishima, K., Fukue, Y., Takano, Y., Tsujimoto, G., Iwasaki, K., and Fujiwara, M., V1a receptor knockout mice exhibit impairment of spatial memory in an eight-arm radial maze, Neurosci. Lett., 2004, vol. 356, pp. 195–198.

    Article  CAS  PubMed  Google Scholar 

  • Ermisch, A., Ruhle, H.J., Landgraf, R., and Hess, J., Blood-brain barrier and peptides, J. Cerebr. Blood Flow Metab., 1985, vol. 5, pp. 350–357.

    Article  CAS  Google Scholar 

  • Forti, F.L. and Armelin, H.A., Arginine vasopressin controls p27(Kip1) protein expression by PKC activation and irreversibly inhibits the proliferation of K-Ras-dependent mouse Y1 adrenocortical malignant cells, Biochim. Biophys. Acta, 2011, vol. 1813, pp. 1438–1445.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann, A.S., Memoli, V.A., Cheng, S.W., Yu, X., and North, W.G., Vasopressin and vasopressin-associated neurophysin are present in gastric and duodenal cells of Brattleboro and Long–Evans rats, Ann. N. Y. Acad. Sci., 1993a, vol. 689, pp. 522–525.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann, A.S., Memoli, V.A., Yu, X.M., and North, W.G., Biosynthesis of vasopressin by gastrointestinal cells of Brattleboro and Long–Evans rats, Peptides, 1993b, vol. 14, pp. 607–612.

    Article  CAS  PubMed  Google Scholar 

  • Furuse, M., Knockout animals and natural mutations as experimental and diagnostic tool for studying tight junction functions in vivo, Biochim. Biophys. Acta, 2009, vol. 1788, pp. 813–819.

    Article  CAS  PubMed  Google Scholar 

  • Ganong, W.F., Neuropeptides in cardiovascular control, J. Hypertension, 1984, vol. 2, pp. S15–S23.

    CAS  Google Scholar 

  • Grant, F.D., Reventos, J., Kawabata, S., Miller, M., Gordon, J.W., and Majzoub, J.A., Transgenic mouse models of vasopressin expression, Hypertension, 1993, vol. 22, pp. 640–645.

    Article  CAS  PubMed  Google Scholar 

  • Habener, J.F., Cwikel, B.J., Hermann, H., Hammer, R.E., Palmiter, R.D., and Brinster, R.L., Metallothionein-vasopressin fusion gene expression in transgenic mice. Nephrogenic diabetes insipidus and brain transcripts localized to magnocellular neurons, J. Biol. Chem., 1989, vol. 264, pp. 18844–18852.

    CAS  PubMed  Google Scholar 

  • Hanahan, D., Wagner, E.F., and Palmiter, R.D., The origins of oncomice: A history of the first transgenic mice genetically engineered to develop cancer, Genes Dev., 2007, vol. 21, pp. 2258–2270.

    Article  CAS  PubMed  Google Scholar 

  • Hiroyama, M., Wang, S., Aoyagi, T., Oikawa, R., Sanbe, A., Takeo, S., and Tanoue, A., Vasopressin promotes cardiomyocyte hypertrophy via the vasopressin V1A receptor in neonatal mice, Eur. J. Pharmacol., 2007, vol. 559, pp. 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Hosoda, K., Hammer, R.E., Richardson, J.A., Baynash, A.G., Cheung, J.C., Giaid, A., and Yanagisawa, M., Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice, Cell, 1994, vol. 79, pp. 1267–1276.

    Article  CAS  PubMed  Google Scholar 

  • Hupf, H., Grimm, D., Riegger, G.A., and Schunkert, H., Evidence for a vasopressin system in the rat heart, Circ. Res., 1999, vol. 84, pp. 365–370.

    Article  CAS  PubMed  Google Scholar 

  • Ivell, R., Schmale, H., Krisch, B., Nahke, P., and Richter, D., Expression of a mutant vasopressin gene: Differential polyadenylation and readthrough of the mRNA 3' end in a frame-shift mutant, EMBO J., 1986, vol. 5, pp. 971–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki, Y., Oiso, Y., Saito, H., and Majzoub, J.A., Effects of various mutations in the neurophysin/glycopeptide portion of the vasopressin gene on vasopressin expression in vitro, Tohoku J. Exp. Med., 2000, vol. 191, pp. 187–202.

    Article  CAS  PubMed  Google Scholar 

  • Izumi, Y., Miura, K., and Iwao, H., Therapeutic potential of vasopressin-receptor antagonists in heart failure, J. Pharmacol. Sci., 2014, vol. 124, pp. 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Koufaris, C., Alexandrou, A., Sismani, C., and Skordis, N., Identification of an AVP-NPII mutation within the AVP moiety in a family with neurohypophyseal diabetes insipidus: Review of the literature, Hormones, 2015, vol. 14, pp. 442–446.

    PubMed  Google Scholar 

  • Landgraf, R. and Wigger, A., Born to be anxious: Neuroendocrine and genetic correlates of trait anxiety in HAB rats, Stress, 2003, vol. 6, pp. 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Landgraf, R., Kessler, M.S., Bunck, M., Murgatroyd, C., Spengler, D., Zimbelmann, M., Nussbaumer, M., Czibere, L., Turck, C.W., Singewald, N., Rujescu, D., and Frank, E., Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: Focus on vasopressin and glyoxalase-I, Neurosci. Biobehav. Rev., 2007, vol. 31, pp. 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Lim, A.T., Lolait, S.J., Barlow, J.W., Autelitano, D.J., Toh, B.H., Boublik, J., Abraham, J., Johnston, C.I., and Funder, J.W., Immunoreactive argininevasopressin in Brattleboro rat ovary, Nature, 1984, vol. 310, pp. 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Majzoub, J.A., Carrazana, E.J., Shulman, J.S., Baker, K.J., and Emanuel, R.L., Defective regulation of vasopressin gene expression in Brattleboro rats, Am. J. Physiol., 1987, vol. 252, pp. E637–E642.

    CAS  PubMed  Google Scholar 

  • Miller, M., Kawabata, S., Wiltshire-Clement, M., Reventos, J., and Gordon, J.W., Increased vasopressin secretion and release in mice transgenic for the rat arginine vasopressin gene, Neuroendocrinology, 1993, vol. 57, pp. 621–625.

    Article  CAS  PubMed  Google Scholar 

  • Montero, S., Mendoza, H., Valles, V., Lemus, M., Alvarez-Buylla, R., and de Alvarez-Buylla, E.R., Arginine-vasopressin mediates central and peripheral glucose regulation in response to carotid body receptor stimulation with Nacyanide, J. Appl. Physiol., 2006, vol. 100, pp. 1902–1909.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Aoyagi, T., Hiroyama, M., Kusakawa, S., Mizutani, R., Sanbe, A., Yamauchi, J., Kamohara, M., Momose, K., and Tanoue, A., Both V(1A) and V(1B) vasopressin receptors deficiency result in impaired glucose tolerance, Eur. J. Pharmacol., 2009, vol. 613, pp. 182–188.

    Article  CAS  PubMed  Google Scholar 

  • Neumann, I.D. and Landgraf, R., Advances in vasopressin and oxytocin–from genes to behaviour to disease, Preface. Progr. Brain Res., 2008, vol. 170, vols. 11–13.

  • Nussey, S.S., Ang, V.T., Jenkins, J.S., Chowdrey, H.S., and Bisset, G.W., Brattleboro rat adrenal contains vasopressin, Nature, 1984, vol. 310, pp. 64–66.

    Article  CAS  PubMed  Google Scholar 

  • Oba, Y. and Lone, N.A., Mortality benefit of vasopressor and inotropic agents in septic shock: A bayesian network meta-analysis of randomized controlled trials, J. Crit. Care, 2014, vol. 29, pp. 706–710.

    Article  CAS  PubMed  Google Scholar 

  • Quintanar-Stephano, A., Organista-Esparza, A., Chavira-Ramirez, R., Kovacs, K., and Berczi, I., Effects of neurointermediate pituitary lobectomy and desmopressin on acute experimental autoimmune encephalomyelitis in lewis rats, Neuroimmunomodulation, 2012, vol. 19, pp. 148–157.

    Article  CAS  PubMed  Google Scholar 

  • Ring, R.H., The central vasopressinergic system: Examining the opportunities for psychiatric drug development, Curr. Pharm. Design, 2005, vol. 11, pp. 205–225.

    Article  CAS  Google Scholar 

  • Roper, J.A., Craighead, M., O’Carroll, A.M., and Lolait, S.J., Attenuated stress response to acute restraint and forced swimming stress in arginine vasopressin 1b receptor subtype (Avpr1b) receptor knockout mice and wild-type mice treated with a novel Avpr1b receptor antagonist, J. Neuroendocrinol., 2010, vol. 22, pp. 1173–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmale, H. and Richter, D., Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats, Nature, 1984, vol. 308, pp. 705–709.

    Article  CAS  PubMed  Google Scholar 

  • Schmale, H., Ivell, R., Breindl, M., Darmer, D., and Richter, D., The mutant vasopressin gene from diabetes insipidus (Brattleboro) rats is transcribed but the message is not efficiently translated, EMBO J., 1984, vol. 3, pp. 3289–3293.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serradeil-Le Gal, C., Bourrie, B., Raufaste, D., Carayon, P., Garcia, C., Maffrand, J.P., Le Fur, G., and Casellas, P., Effect of a new, potent, nonpeptide V1a vasopressin antagonist, SR 49059, on the binding and the mitogenic activity of vasopressin on Swiss 3t3 cells, Biochem. Pharmacol., 1994, vol. 47, pp. 633–641.

    CAS  PubMed  Google Scholar 

  • Serriere, V., Tran, D., Stelly, N., Claret, M., Alonso, G., Tordjmann, T., and Guillon, G., Vasopressin-induced morphological changes in polarized rat hepatocyte multiplets: Dual calcium-dependent effects, Cell Calcium, 2008, vol. 43, pp. 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Somova, L., Ivanova, E., Zaharieva, S., and Machuganska, A., Changes of adrenal vasopressin during hemorrhagic shock in rats with hereditary diabetes insipidus (Brattleboro strain), Acta Physiol. Pharmacol. Bulg., 1986, vol. 12, pp. 70–75.

    CAS  PubMed  Google Scholar 

  • Tahara, A., Tsukada, J., Tomura, Y., Yatsu, T., and Shibasaki, M., Vasopressin regulates rat mesangial cell growth by inducing autocrine secretion of vascular endothelial growth factor, J. Physiol. Sci., 2011, vol. 61, pp. 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Tamma, R., Sun, L., Cuscito, C., Lu, P., Corcelli, M., Li, J., Colaianni, G., Moonga, S.S., Di Benedetto, A., Grano, M., Colucci, S., Yuen, T., New, M.I., Zallone, A., and Zaidi, M., Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 18644–18649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanoue, A., Ito, S., Honda, K., Oshikawa, S., Kitagawa, Y., Koshimizu, T.A., Mori, T., and Tsujimoto, G., The vasopressin V1b receptor critically regulates hypothalamic-pituitary- adrenal axis activity under both stress and resting conditions, J. Clin. Invest., 2004, vol. 113, pp. 302–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valtin, H., The discovery of the Brattleboro rat, recommended nomenclature, and the question of proper controls, Ann. N. Y. Acad. Sci., 1982, vol. 394, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Young, W.S., Kovacs, K., and Lolait, S.J., The diurnal rhythm in vasopressin v1a receptor expression in the suprachiasmatic nucleus is not dependent on vasopressin, Endocrinology, 1993, vol. 133, pp. 585–590.

    CAS  PubMed  Google Scholar 

  • Zelena, D., Vasopressin in health and disease with a focus on affective disorders, Central Nervous Syst. Agents Med. Chem, 2012, vol. 12, pp. 286–303.

    Article  CAS  Google Scholar 

  • Zhu, W., Tilley, D.G., Myers, V.D., Coleman, R.C., and Feldman, A.M., Arginine vasopressin enhances cell survival via a G protein-coupled receptor kinase 2/beta-arrestin1/extracellular-regulated kinase 1/2-dependent pathway in H9c2 cells, Mol. Pharmacol., 2013, vol. 84, pp. 227–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zelena.

Additional information

Original Russian Text © D. Zelena, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 2, pp. 228–233.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelena, D. Comparison of natural and artificial vasopressin deficiency: Why is the latter lethal?. Russ J Genet Appl Res 7, 243–248 (2017). https://doi.org/10.1134/S2079059717030157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717030157

Keywords

Navigation