Skip to main content
Log in

Tyrosine hydroxylase in the brain and its regulation by glucocorticoids

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Adverse factors of early development can produce long-lasting alterations of the brain neurochemical systems, the physiological functions and behavior. Tyrosine hydroxylase (TH), the key enzyme of catecholamine biosynthesis, determines the activity of the neurochemical system and is induced by stress hormones, glucocorticoids, in vitro and in vivo. Analysis of our own data and the data in the literature concerning the effect of stress hormones, glucocorticoids, in the critical periods of perinatal development on the TH gene expression, the level of the protein and the enzyme activity, as well as consideration of the possible mechanisms of these effects, was the purpose of the review. Administration of dexamethasone or hydrocortisone increases the level of TH mRNA in the brainstem of 20-day-old fetuses and 3-day-old rats in 6 hours; it is accompanied by an increase in the enzyme activity and immunohistochemical detection of the TH protein in the brainstem. A change in the TH gene expression in the critical period of early development leads to an increase in the level of TH mRNA in the brainstem of 25- and 70-day-old rats and the enzyme activity in the brainstem and cerebral cortex of adult animals. The period of TH sensitivity to the glucocorticoid level is agedependent. Administration of hormones on the 8th day of the life is not accompanied by changes in the TH mRNA level and the enzyme activity. The promoter of the TH gene does not have a classical functionally active hormone-dependent element. The mechanism of hormonal induction of the TH expression may be based on the noncanonical pathway of the glucocorticoids as a result of the known protein–protein interaction of the glucocorticoid receptor with other transcription factors, such as proteins of the AP-1 complex. This mechanism in the regulation of the TH expression by dexamethasone was found in the pheochromocytoma cell line. The existence of such mechanism in vivo needs to be explored in futher studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altmann, C.R. and Brivanlou, A.H., Neural patterning in the vertebrate embryo, Int. Rev. Cytol., 2001, vol. 203, pp. 447–482.

    Article  CAS  PubMed  Google Scholar 

  • Bademci, G., Vance, J.M., and Wang, L., Tyrosine hydroxylase gene: Another piece of the genetic puzzle of Parkinson’s disease, CNS Neurol. Disord. Drug Targets, 2012, vol. 11, no. 4, pp. 469–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, D.J., Fetal origins of coronary heart disease, BMJ, 1995, vol. 311, no. 6998, pp. 171–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth, K.A., Kishimoto, Y., Rohr, K.B., Seydler, C., Schulte-Merker, S., and Wilson, S.W., Bmp activity establishes a gradient of positional information throughout the entire neural plate, Development, 1999, vol. 126, no. 22, pp. 4977–4987.

    CAS  PubMed  Google Scholar 

  • Beck, I.M., Vanden Berghe W., Vermeulen, L., Yamamoto, K.R., Haegeman, G., and De Bosscher, K., Crosstalk in inflammation: The interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases, Endocr. Rev., 2009, vol. 30, no. 7, pp. 830–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingham, B.C., Sheela Rani C.S., Frazer, A., Strong, R., and Morilak, D.A., Exogenous prenatal corticosterone exposure mimics the effects of prenatal stress on adult brain stress response systems and fear extinction behavior, Psychoneuroendocrinology, 2013, vol. 38, no. 11, pp. 2746–2757. doi 10.1016/j.psyneuen.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  • Bonnin, A., de Miguel, R., Rodriguez-Manzaneque, J.C., Fernandez-Ruiz, J.J., Santos, A., and Ramos, J.A., Changes in tyrosine hydroxylase gene expression in mesencephalic catecholaminergic neurons of immature and adult male rats perinatally exposed to cannabinoids, Brain Res. Develop. Brain Res., 1994, vol. 81, no. 1, pp. 147–150.

    Article  CAS  Google Scholar 

  • Bornstein, S.R., Tian, H., Haidan, A., Böttner, A., Hiroi, N., Eisenhofer, G., McCann, S.M., Chrousos, G.P., and Roffler-Tarlov, S., Deletion of tyrosine hydroxylase gene reveals functional interdependence of adrenocortical and chromaffin cell system in vivo, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 26, pp. 14742–14747. doi 10.1073/pnas.97.26.14742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boschi, N.M., Takeuchi, K., Sterling, C., and Tank, A.W., Differential expression of polycytosine-binding protein isoforms in adrenal gland, locus coeruleus and midbrain, Neuroscience, 2015, vol. 286, pp. 1–12. doi 10.1016/j.neuroscience.2014.11.038

    Article  CAS  PubMed  Google Scholar 

  • Candy, J. and Collet, C., Two tyrosine hydroxylase genes in teleosts, Biochim. Biophys. Acta, 2005, vol. 1727, no. 1, pp. 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Carson, R.P. and Robertson, D., Genetic manipulation of noradrenergic neurons, J. Pharmacol. Exp. Ther., 2002, vol. 301, no. 2, pp. 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Champagne, D.L., de Kloet, E.R., and Joels, M., Fundamental aspects of the impact of glucocorticoids on the (immature) brain, Semin. Fetal Neonatal Med., 2009, vol. 14, no. 3, pp. 136–142. doi 10.1016/j.siny.2008.11.006

    Article  PubMed  Google Scholar 

  • Craig, S.P., Buckle, V.J., Lamouroux, A., Mallet, J., and Craig, I., Localization of the human tyrosine hydroxylase gene to 11p15: Gene duplication and evolution of metabolic pathways, Cytogenet. Cell Genet., 1986, vol. 42, nos. 1/2, pp. 29–32.

    Article  CAS  PubMed  Google Scholar 

  • Dent, G.W., Smith, M.A., and Levine, S., Stress-induced alterations in locus coeruleus gene expression during ontogeny, Brain Res. Develop. Brain Res., 2001, vol. 127, no. 1, pp. 23–30.

    Article  CAS  Google Scholar 

  • Diamond, M.I., Miner, J.N., Yoshinaga, S.K., and Yamamoto, K.R., Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element, Science, 1990, vol. 249, no. 4974, pp. 1266–1272.

    Article  CAS  PubMed  Google Scholar 

  • Dunkley, P.R., Bobrovskaya, L., Graham, M.E., von Nagy-Felsobuki, E.I., and Dickson, P.W., Tyrosine hydroxylase phosphorylation: Regulation and consequences, J. Neurochem., 2004, vol. 91, no. 5, pp. 1025–1043.

    Article  CAS  PubMed  Google Scholar 

  • Dygalo, N.N. and Kalinina, T.S., Effects of the interaction of genotype and glucocorticoids on brain tyrosine hydroxylase activity in rat fetuses, Genetika, 1993, vol. 29, no. 9, pp. 1453–1459.

    CAS  PubMed  Google Scholar 

  • Dygalo, N.N., Kalinina, T.S., and Shishkina, G.T., Neonatal programming of rat behavior by downregulation of alpha2Aadrenoreceptor gene expression in the brain, Ann. N.Y.: Acad. Sci., 2008, vol. 1148, pp. 409–414. doi 10.1196/annals.1410.063

    Article  Google Scholar 

  • Fossom, L.H., Sterling, C.R., and Tank, A.W., Regulation of tyrosine hydroxylase gene transcription rate and tyrosine hydroxylase mRNA stability by cyclic amp and glucocorticoid, Mol. Pharmacol., 1992, vol. 42, no. 5, pp. 898–908.

    CAS  PubMed  Google Scholar 

  • Friggi-Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., and Birman, S., Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase, J. Neurobiol., 2003, vol. 54, no. 4, pp. 618–627. doi 10.1002/neu.10185

    Article  CAS  PubMed  Google Scholar 

  • Fujinaga, M. and Scott, J.C., Gene expression of catecholamine synthesizing enzymes and beta adrenoceptor subtypes during rat embryogenesis, Neurosci. Lett., 1997, vol. 231, no. 2, pp. 108–112.

    Article  CAS  PubMed  Google Scholar 

  • Fung, B.P., Yoon, S.O., and Chikaraishi, D.M., Sequences that direct rat tyrosine-hydroxylase gene-expression, J. Neurochem., 1992, vol. 58, no. 6, pp. 2044–2052.

    Article  CAS  PubMed  Google Scholar 

  • Gallo, L.A., Tran, M., Moritz, K.M., and Wlodek, M.E., Developmental programming: Variations in early growth and adult disease, Clin. Exp. Pharmacol. Physiol., 2013, vol. 40, no. 11, pp. 795–802. doi 10.1111/1440-1681.12092

    Article  CAS  PubMed  Google Scholar 

  • Goridis, C. and Rohrer, H., Specification of catecholaminergic and serotonergic neurons, Nat. Rev. Neurosci., 2002, vol. 3, no. 7, pp. 531–541. doi 10.1038/nrn871

    Article  CAS  PubMed  Google Scholar 

  • Groeneweg, F.L., Karst, H., de Kloet, E.R., and Joels, M., Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling, Mol. Cell. Endocrinol., 2012, vol. 350, no. 2, pp. 299–309. doi 10.1016/j.mce.2011.06.020

    Article  CAS  PubMed  Google Scholar 

  • Guo, S., Brush, J., Teraoka, H., Goddard, A., Wilson, S.W., Mullins, M.C., and Rosenthal, A., Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein Soulless/Phox2a, Neuron, 1999, vol. 24, no. 3, pp. 555–566.

    Article  CAS  PubMed  Google Scholar 

  • Hagerty, T., Morgan, W.W., Elango, N., and Strong, R., Identification of a glucocorticoid-responsive element in the promoter region of the mouse tyrosine hydroxylase gene, J. Neurochem., 2001, vol. 76, no. 3, pp. 825–834.

    Article  CAS  PubMed  Google Scholar 

  • Harris, A. and Seckl, J., Glucocorticoids, prenatal stress and the programming of disease, Horm. Behav., 2011, vol. 59, no. 3, pp. 279–289. doi 10.1016/j.yhbeh.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  • Haycock, J.W., Species differences in the expression of multiple tyrosine hydroxylase protein isoforms, J. Neurochem., 2002, vol. 81, no. 5, pp. 947–953.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, M.A., Serova, L.I., and Sabban, E.L., Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and mitogen-activated protein kinases in the rat locus coeruleus, J. Neurochem., 2005, vol. 95, no. 2, pp. 484–498.

    Article  CAS  PubMed  Google Scholar 

  • Herlenius, E. and Lagercrantz, H., Development of neurotransmitter systems during critical periods, Exp. Neurol., 2004, vol. 190, pp. 8–21. doi 10.1016/j.expneurol.2004.03.027

    Article  Google Scholar 

  • Hernandez-Sanchez, C., Bartulos, O., Valenciano, A.I., Mansilla, A., and de Pablo, F., The regulated expression of chimeric tyrosine hydroxylaseinsulin transcripts during early development, Nucl. Acids, 2006, vol. 34, no. 12, pp. 3455–3464.

    Article  CAS  Google Scholar 

  • Hippenmeyer, S., Kramer, I., and Arber, S., Control of neuronal phenotype: What targets tell the cell bodies, Trends Neurosci., 2004, vol. 27, no. 8, pp. 482–488. doi 10.1016/j.tins.2004.05.012

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, M.R., Tiveron, M.C., Guillemot, F., Brunet, J.F., and Goridis, C., Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system, Development, 1998, vol. 125, no. 4, pp. 599–608.

    CAS  PubMed  Google Scholar 

  • Holm, P.C., Rodriguez, F.J., Kele, J., Castelo-Branco, G., Kitajewski, J., and Arenas, E., BMPs, FGF8 and Wnts regulate the differentiation of locus coeruleus noradrenergic neuronal precursors, J. Neurochem., 2006, vol. 99, no. 1, pp. 343–352. doi 10.1111/j.1471-4159.2006.04039.x

    Article  CAS  PubMed  Google Scholar 

  • Kalinina, T.S. and Dygalo, N.N., Development of the brain noradrenergic system in rats after prenatal exposure to corticosterone, Izv. Akad. Nauk, Ser. Biol., 2013, vol. 4, pp. 447–452.

    Google Scholar 

  • Kalinina, T.S., Shishkina, G.T., and Dygalo, N.N., Induction of tyrosine hydroxylase gene expression by glucocorticoids in the perinatal rat brain is age-dependent, Neurochem. Res, 2012, vol. 37, no. 4, pp. 811–818.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, A., Petropoulos, S., and Matthews, S.G., Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids, Brain Res. Rev., 2008, vol. 57, no. 2, pp. 586–595. doi 10.1016/j.brainresrev.2007.06.013

    Article  CAS  PubMed  Google Scholar 

  • Kassel, O. and Herrlich, P., Crosstalk between the glucocorticoid receptor and other transcription factors: Molecular aspects, Mol. Cell. Endocrinol., 2007, vol. 275, nos. 1–2, pp. 13–29.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, K., Morita, S., Sawada, H., Mizuguchi, T., Yamada, K., Nagatsu, I., Hata, T., Watanabe, Y., Fujita, K., and Nagatsu, T., Targeted disruption of the tyrosinehydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice, J. Biol. Chem., 1995, vol. 270, no. 45, pp. 27235–27243.

    Article  CAS  PubMed  Google Scholar 

  • Kreider, M.L., Tate, C.A., Cousins, M.M., Oliver, C.A., Seidler, F.J., and Slotkin, T.A., Lasting effects of developmental dexamethasone treatment on neural cell number and size, synaptic activity, and cell signaling: critical periods of vulnerability, dose-effect relationships, regional targets, and sex selectivity, Neuropsychopharmacology, 2006, vol. 31, no. 1, pp. 12–35. doi 10.1038/sj.npp.1300783

    CAS  PubMed  Google Scholar 

  • Kumer, S.C. and Vrana, K.E., Intricate regulation of tyrosine hydroxylase activity and gene expression, J. Neurochem., 1996, vol. 67, no. 2, pp. 443–462.

    Article  CAS  PubMed  Google Scholar 

  • Kvetnansky, R., Sabban, E.L., and Palkovits, M., Catecholaminergic systems in stress: structural and molecular genetic approaches, Physiol. Rev., 2009, vol. 89, no. 2, pp. 535–606.

    Article  CAS  PubMed  Google Scholar 

  • Langlais, D., Couture, C., Balsalobre, A., and Drouin, J., The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome, Mol. Cell, 2012, vol. 47, no. 1, pp. 38–49. doi 10.1016/j.molcel.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  • Lenartowski, R. and Goc, A., Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene, Int. J. Dev. Neurosci., 2011, vol. 29, no. 8, pp. 873–883.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, E.J., Tank, A.W., Weiner, N., and Chikaraishi, D.M., Regulation of tyrosine hydroxylase mRNA by glucocorticoid and cyclic AMP in a rat pheochromocytoma cell line. Isolation of a cDNA clone for tyrosine hydroxylase mRNA, J. Biol. Chem., 1983, vol. 258, no. 23, pp. 14632–14637.

    CAS  PubMed  Google Scholar 

  • Liberman, A.C., Refojo, D., Druker, J., Toscano, M., Rein, T., Holsboer, F., and Arzt, E., The activated glucocorticoid receptor inhibits the transcription factor t-bet by direct protein-protein interaction, FASEB J., 2007, vol. 21, no. 4, pp. 1177–1188. doi 10.1096/fj.06-7452com

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Sanchez, C., Bartulos, O., Martinez-Campos, E., Ganan, C., Valenciano, A.I., Garcia-Martinez, V., De Pablo, F., and Hernandez-Sanchez, C., Tyrosine hydroxylase is expressed during early heart development and is required for cardiac chamber formation, Cardiovasc. Res., 2010, vol. 88, no. 1, pp. 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Makino, S., Smith, M.A., and Gold, P.W., Regulatory role of glucocorticoids and glucocorticoid receptor mRNA levels on tyrosine hydroxylase gene expression in the locus coeruleus during repeated immobilization stress, Brain Res., 2002, vol. 943, no. 2, pp. 216–223.

    Article  CAS  PubMed  Google Scholar 

  • Markey, K.A., Towle, A.C., and Sze, P.Y., Glucocorticoid influence on tyrosine hydroxylase activity in mouse locus coeruleus during postnatal development, Endocrinology, 1982, vol. 111, no. 5, pp. 1519–1523. doi 10.1210/endo-111-5-1519

    Article  CAS  PubMed  Google Scholar 

  • Markham, J.A. and Koenig, J.I., Prenatal stress: Role in psychotic and depressive diseases, Psychopharmacology, 2011, vol. 214, no. 1, pp. 89–106. doi 10.1007/s00213-010-2035-0

    Article  CAS  PubMed  Google Scholar 

  • Matthews, K., Dalley, J.W., Matthews, C., Tsai, T.H., and Robbins, T.W., Periodic maternal separation of neonatal rats produces region- and gender-specific effects on biogenic amine content in postmortem adult brain, Synapse, 2001, vol. 40, no. 1, pp. 1–10. doi 10.1002/1098-2396(200104)40:1<1::AID-SYN1020>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  • McArthur, S., McHale, E., and Gillies, G.E., The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sexregion- and time-specific manner, Neuropsychopharmacology, 2007, vol. 32, no. 7, pp. 1462–1476. doi 10.1038/sj.npp.1301277

    Article  CAS  PubMed  Google Scholar 

  • Morin, X., Cremer, H., Hirsch, M.R., Kapur, R.P., Goridis, C., and Brunet, J.F., Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a, Neuron, 1997, vol. 18, no. 3, pp. 411–423.

    Article  CAS  PubMed  Google Scholar 

  • Nagamoto-Combs, K., Piech, K.M., Best, J.A., Sun, B., and Tank, A.W., Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic ampresponsive element binding protein-independent regulation, J. Biol. Chem., 1997, vol. 272, no. 9, pp. 6051–6058.

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu, T., Levitt, M., and Udenfriend, S., Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis, J. Biol. Chem., 1964, vol. 2910-2917.

  • Naumenko, E.V. and Dygalo, N.N., Noradrenergic Brain Mechanisms and Emotional Stress in Adult Rats after Prenatal Hydrocortisone Treatment. Biogenic Amines in Development, Amsterdam: Elsevier/North Holland Biomedical Press, 1980, pp. 373–388.

    Google Scholar 

  • Newton, R. and Holden, N.S., Separating transrepression and transactivation: A distressing divorce for the glucocorticoid receptor?, Mol. Pharmacol., 2007, vol. 72, no. 4, pp. 799–809.

    Article  CAS  PubMed  Google Scholar 

  • Oakley, R.H. and Cidlowski, J.A., The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease, J. Allergy Clin. Immunol., 2013, vol. 132, no. 5, pp. 1033–1044. doi 10.1016/j.jaci.2013.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada, Y., Saika, S., Shirai, K., Ohnishi, Y., and Senba, E., Expression of AP-1 (c-fos/c-jun) in developing mouse corneal epithelium, Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie, 2003, vol. 241, no. 4, pp. 330–333.

    Article  CAS  PubMed  Google Scholar 

  • Pattyn, A., Goridis, C., and Brunet, J.F., Specification of the central noradrenergic phenotype by the homeobox gene Phox2b, Mol. Cell. Neurosci., 2000, vol. 15, no. 3, pp. 235–243. doi 10.1006/mcne.1999.0826

    Article  CAS  PubMed  Google Scholar 

  • Paulding, W.R., Schnell, P.O., Bauer, A.L., Striet, J.B., Nash, J.A., Kuznetsova, A.V., and Czyzyk-Krzeska, M.F., Regulation of gene expression for neurotransmitters during adaptation to hypoxia in oxygensensitive neuroendocrine cells, Microsc. Res. Techniq., 2002, vol. 59, no. 3, pp. 178–187. doi 10.1002/jemt.10192

    Article  CAS  Google Scholar 

  • Pennypacker, K.R., AP-1 transcription factor complexes in CNS disorders and development, J. Florida Med. Assoc., 1995, vol. 82, no. 8, pp. 551–554.

    CAS  Google Scholar 

  • Pfahl, M., Nuclear receptor/AP-1 interaction, Endocr. Rev., 1993, vol. 14, no. 5, pp. 651–658.

    CAS  PubMed  Google Scholar 

  • Puymirat, J., Faivre-Bauman, A., Bizzini, B., and Tixier-Vidal, A., Prenatal and postnatal ontogenesis of neurotransmitter- synthetizing enzymes and [125I]tetanus toxin binding capacity in the mouse hypothalamus, Brain Res., 1982, vol. 255, no. 2, pp. 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Qian, Y., Fritzsch, B., Shirasawa, S., Chen, C.L., Choi, Y., and Ma, Q., Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3, Genes Dev., 2001, vol. 15, no. 19, pp. 2533–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radcliffe, P.M., Sterling, C.R., and Tank, A.W., Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone, J. Neurochem., 2009, vol. 109, no. 5, pp. 1272–1284. doi 10.1111/j.1471-4159.2009.06056.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raivich, G. and Behrens, A., Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain, Progr. Neurobiol., 2006, vol. 78, no. 6, pp. 347–363.

    Article  CAS  Google Scholar 

  • Rani, C.S., Elango, N., Wang, S.S., Kobayashi, K., and Strong, R., Identification of an activator protein-1-like sequence as the glucocorticoid response element in the rat tyrosine hydroxylase gene, Mol. Pharmacol., 2009, vol. 75, no. 3, pp. 589–598.

    Article  PubMed  Google Scholar 

  • Rani, C.S.S., Soto-Pina, A., Iacovitti, L., and Strong, R., Evolutionary conservation of an atypical glucocorticoidresponsive element in the human tyrosine hydroxylase gene, J. Neurochem., 2013, vol. 126, no. 1, pp. 19–28. doi 10.1111/jnc.12294

    Article  Google Scholar 

  • Reynolds, R.M., Programming effects of glucocorticoids, Clin. Obstet. Gynecol., 2013, vol. 56, no. 3, pp. 602–609.

    Article  PubMed  Google Scholar 

  • Rios, M., Habecker, B., Sasaoka, T., Eisenhofer, G., Tian, H., Landis, S., Chikaraishi, D., and Roffler-Tarlov, S., Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase, J. Neurosci., 1999, vol. 19, no. 9, pp. 3519–3526.

    CAS  PubMed  Google Scholar 

  • Romano, G., Suon, S., Jin, H., Donaldson, A.E., and Iacovitti, L., Characterization of five evolutionary conserved regions of the human tyrosine hydroxylase (TH) promoter: Implications for the engineering of a human TH minimal promoter assembled in a self-inactivating lentiviral vector system, J. Cell Physiol., 2005, vol. 204, no. 2, pp. 666–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabban, E.L. and Kvetnansky, R., Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events, Trends Neurosci., 2001, vol. 24, no. 2, pp. 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Sabban, E.L., Hebert, M.A., Liu, X., Nankova, B., and Serova, L., Differential effects of stress on gene transcription factors in catecholaminergic systems, Ann. N. Y. Acad. Sci., 2004, vol. 1032, pp. 130–140.

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky, R.M., Romero, L.M., and Munck, A.U., How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions, Endocr. Rev., 2000, vol. 21, no. 1, pp. 55–89.

    CAS  PubMed  Google Scholar 

  • Shishkina, G.T., Kalinina, T.S., and Dygalo, N.N., Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood, Neuroscience, 2004a, vol. 129, no. 3, pp. 521–528. doi 10.1016/j.neuroscience.2004.08.015

    Article  CAS  PubMed  Google Scholar 

  • Shishkina, G.T., Kalinina, T.S., Popova, N.K., and Dygalo, N.N., Influence of neonatal short-term reduction in brainstem alpha2A-adrenergic receptors on receptor ontogenesis, acoustic startle reflex, and prepulse inhibition in rats, Behav. Neurosci., 2004b, vol. 118, no. 6, pp. 1285–1292. doi 10.1037/0735-7044.118.6.1285

    Article  CAS  PubMed  Google Scholar 

  • Simon, H.H., Scholz, C., and O’Leary, D.D., Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dosedependent manner, Mol. Cell. Neurosci., 2005, vol. 28, no. 1, pp. 96–105. doi 10.1016/j.mcn.2004.08.016

    Article  CAS  PubMed  Google Scholar 

  • Slotkin, T.A., Kreider, M.L., Tate, C.A., and Seidler, F.J., Critical prenatal and postnatal periods for persistent effects of dexamethasone on serotonergic and dopaminergic systems, Neuropsychopharmacology, 2006, vol. 31, no. 5, pp. 904–911. doi 10.1038/sj.npp.1300892

    Article  CAS  PubMed  Google Scholar 

  • Sukhareva, E.V., Dygalo, N.N., and Kalinina, T.S., Influence of dexamethasone on the expression of early response genes c-fos and c-jun in different parts of the neonatal brain, (Moscow, 2016).

    Google Scholar 

  • Sukhareva, E.V., Kalinina, T.S., Lanshakov, D.A., Bulygina, V.V., and Dygalo, N.N., Proteins of the AP-1 complex in induction of brain tyrosinhydroxylase by glucocorticoids in early ontogenesis, Mater. Sed’m. Vseros. nauch.-prakt. konf. “Fundamental’nye aspekty kompensatorno-prisposobitel’nykh protsessov” i Molodezhn. simp. “Molekulyarno-kletochnye i mediko-ekologicheskie problemy kompensatsii i prisposobleniya” (Proc. 7th Sci.-Pract. Conf. Fundamental Aspects of Compensatory and Adaptive Processes and Youth Symp. Molecular-Cellular and Medical-Environmental Issues of Compensation and Adaptation), 2015, pp. 271–272.

    Google Scholar 

  • Sun, B., Chen, X., Xu, L., Sterling, C., and Tank, A.W., Chronic nicotine treatment leads to induction of tyrosine hydroxylase in locus ceruleus neurons: The role of transcriptional activation, Mol. Pharmacol., 2004, vol. 66, no. 4, pp. 1011–1021.

    Article  CAS  PubMed  Google Scholar 

  • Tank, A.W., Curella, P., and Ham, L., Induction of mRNA for tyrosine hydroxylase by cyclic AMP and glucocorticoids in a rat pheochromocytoma cell line: Evidence for the regulation of tyrosine hydroxylase synthesis by multiple mechanisms in cells exposed to elevated levels of both inducing agents, Mol. Pharmacol., 1986, vol. 30, no. 5, pp. 497–503.

    CAS  PubMed  Google Scholar 

  • Tank, A.W., Xu, L., Chen, X., Radcliffe, P., and Sterling, C.R., Post-transcriptional regulation of tyrosine hydroxylase expression in adrenal medulla and brain, Ann. N. Y. Acad. Sci., 2008, vol. 1148, pp. 238–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekin, I., Roskoski, R., Jr., Carkaci-Salli, N., and Vrana, K.E., Complex molecular regulation of tyrosine hydroxylase, J. Neur. Transm. (Vienna), 2014, vol. 121, no. 12, pp. 1451–1481. doi 10.1007/s00702-014-1238-7

    Article  CAS  Google Scholar 

  • Teurich, S. and Angel, P., The glucocorticoid receptor synergizes with Jun homodimers to activate AP-1-regulated promoters lacking GR binding sites, Chem. Sens., 1995, vol. 20, no. 2, pp. 251–255.

    Article  CAS  Google Scholar 

  • Thomas, S.A., Matsumoto, A.M., and Palmiter, R.D., Noradrenaline is essential for mouse fetal development, Nature, 1995, vol. 374, no. 6523, pp. 643–646.

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Höpker, A. and Rohrer, H., The specification of noradrenergic locus coeruleus (LC) neurones depends on bone morphogenetic proteins (BMPs), Development, 2002, vol. 129, no. 4, pp. 983–991.

    PubMed  Google Scholar 

  • Wurst, W. and Bally-Cuif, L., Neural plate patterning: Upstream and downstream of the isthmic organizer, Nat. Rev. Neurosci., 2001, vol. 2, no. 2, pp. 99–108. doi 10.1038/35053516

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, K., Ruuskanen, J.O., Wullimann, M.F., and Vernier, P., Two tyrosine hydroxylase genes in vertebrates. New dopaminergic territories revealed in the zebrafish brain, Mol. Cell. Neurosci., 2010, vol. 43, no. 4, pp. 394–402.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, S., Quealy, J.A., Bode, A.M., Nomura, M., Kaji, A., Ma, W.Y., and Dong, Z., Organ-specific activation of activator protein-1 in transgenic mice by 12-o-tetradecanoylphorbol-13-acetate with different administration methods, Cancer Res., 2001, vol. 61, no. 10, pp. 4084–4091.

    CAS  PubMed  Google Scholar 

  • Zhou, Q.Y., Quaife, C.J., and Palmiter, R.D., Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development, Nature, 1995, vol. 374, no. 6523, pp. 640–643.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sukhareva.

Additional information

Original Russian Text © E.V. Sukhareva, T.S. Kalinina, V.V. Bulygina, N.N. Dygalo, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 2, pp. 212–219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhareva, E.V., Kalinina, T.S., Bulygina, V.V. et al. Tyrosine hydroxylase in the brain and its regulation by glucocorticoids. Russ J Genet Appl Res 7, 226–234 (2017). https://doi.org/10.1134/S2079059717030145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717030145

Keywords

Navigation