Skip to main content
Log in

Microevolutionary differentiation of cereal tetraploid species by the formation of recombinant genomes

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The process of the microevolutionary differentiation of cereals by the formation of recombinant genomes was studied in dynamics (F6–F17) with tetraploid wheatrye amphidiploids as examples. Evidence that jointly growing tetraploid amphidiploids having a common (pivotal) genome in their composition and differing in secondary (differential) genomes leads to their hybridization with a high degree of probability has been found. The forms developed are characterized by a very wide range of variability caused by different combinations of chromosomes and chromosome segments in differential genomes; however, they maintain the same structure of the pivotal genome. Intergenomic recombinations at the level of intact chromosomes were characteristic of homeologous groups with a high rate of stabilization of the chromosomal composition, and recombinations at the level of chromosomal segments, of groups with a low stabilization rate, where the heterologous chromosome pairs remained preserved for a long time. The dominance of the regulatory genetic systems of the pivotal genome provides a high pairing level of homeologs from heterologous pairs in meiosis followed by intergenomic recombinations at the level of chromosome segments. The experimental data suggest that newly developed tetraploid forms interbreed easily forming a single hybrid zone, where the permanent redistribution of the genetic material of differential genomes and the further range expansion of the genotypic variability available to selection take place during the alternation of generations, resulting in such a zone becoming a potential centre of speciation. The subsequent adaptive radiation of hybrid material in an ecologically separated environment occurs by the selection of forms with different variants of the recombinant genome in various ecological niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott, R., Albach, D., Ansell, S., Arntzen, J.W., Baird, S.J., Bierne, N., Boughman, J., Brelsford, A., Buerkle, C.A., Buggs, R., Butlin, R.K., Dieckmann, U., Eroukhmanoff, F., Grill, A., Cahan, S.H., et al., Hybridization and speciation, J. Evol. Biol., 2013, vol. 26, no. 2, pp. 229–246.

    Article  CAS  PubMed  Google Scholar 

  • Adams, K.L. and Wendel, J.F., Polyploidy and genome evolution in plants: Genome studies and molecular genetics, Curr. Opin. Plant Biol., 2005, vol. 8, no. 1, pp. 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, 2000, vol. 408, no. 6814, pp. 796–815. doi 10.1038/35048692

  • Badaev, N.S., Badaeva, E.D., Dubovets, N.I., Bolsheva, N.L., Bormotov, V.E., and Zelenin, A.V., Formation of a synthetic karyotype of tetraploid triticale, Genome, 1992, vol. 35, no. 2, pp. 311–317. doi 10.1139/g92-047

    Article  Google Scholar 

  • Badaeva, E.D., Amosova, A.V., Samatadze, T.E., Zoshchuk, S.A., Shostak, N.G., Chikida, N.N., Zelenin, A.V., Raupp, W.J., Friebe, B., and Gill, B.S., Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster, Plant Syst. Evol., 2004, vol. 246, nos. 1–2, pp. 45–76. doi 10.1007/s00606-003-0072-4

    Article  CAS  Google Scholar 

  • Badaeva, E.D., Badaev, N.S., Gill, D.S., and Filatenko, A.A., Intraspecific karyotype divergence in triticum araraticum (poaceae), Plant Syst. Evol., 1994, vol. 192, no. 1, pp. 117–145.

    Article  Google Scholar 

  • Blanc, G. and Wolfe, K.H., Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes, Plant Cell, 2004, vol. 16, no. 7, pp. 1667–1678. doi 10.1105/tpc.021345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bormotov, V.E., Shcherbakova, A.M., and Dubovets, N.I., Alloplasmic rye in breeding of tetraploid triticale, S-kh. Biol., 1988, vol. 6, pp. 31–35.

    Google Scholar 

  • Ceoloni, C., Forte, P., Ciaffi, M., Nenno, M., Bitti, A., De Vita, P., and D’Egidio, M.G., Chromosomally engineered durum wheat: The potential of alien gene introgressions affecting disease resistance and quality, Proc. Seminar on durum wheat improvement in the Mediterranean region: New challenges, Zaragoza, 2000, pp. 363–371.

    Google Scholar 

  • Cuadrado, M.C. and Romero, C., Different genetic systems in rye affecting homoeologous pairing in wheat-rye combinations, Genome, 1988, vol. 30, no. 5, pp. 793–796. doi 10.1139/g88-127

    Article  Google Scholar 

  • Cui, L., Wall, P.K., Leebens-Mack, J.H., Lindsay, B.G., Soltis, D.E., Doyle, J.J., Soltis, P.S., Carlson, J.E., Arumuganathan, K., Barakat, A., Albert, V.A., Ma, H., and dePamphilis, C.W., Widespread genome duplications throughout the history of flowering plants, Genome Res., 2006, vol. 16, no. 6, pp. 738–749. doi 10.1101/gr.4825606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubovets, N.I., Sycheva, E.A., Solovey, L.A., Shtyk, T.I., and Bondarevich, E.B., Recombinant genome of cereals: The pattern of formation and the role in evolution of polyploid species, Russ. J. Genet., 2008, vol. 44, no. 1, pp. 44–50. doi 10.1134/S1022795408010067

    Article  CAS  Google Scholar 

  • Dubovets, N.I., Tetraploid triticales as a model of cereals hybrid genome formation, Proc. 11th EWAC Conference, Novosibirsk, 2000, pp. 21–24.

    Google Scholar 

  • Ehrendorfer, F.L., Polyploidy and Distribution. Polyploidy-Biological Relevance, New York: Plenum Press, 1980, pp. 45–60.

    Google Scholar 

  • Feldman, M. and Levy, A.A., Allopolyploidy–a shaping force in the evolution of wheat genomes, Cytogenet. Genome Res., 2005, vol. 109, nos. 1–3, pp. 250–258. doi 10.1159/000082407

    Article  CAS  PubMed  Google Scholar 

  • Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B.M., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. japonica), Science, 2002, vol. 296, no. 5565, pp. 92–100. doi 10.1126/science.1068275

    Article  CAS  PubMed  Google Scholar 

  • Goh, W.L., Chandran, S., Franclin, D.C., Isagi, Y., Koshy, K.C., Sungkaew, S., Yang, H.Q., Xia, N.H., and Wong, K.M., Multigene region phylogenetic analyses suggest reticulate evolution and a clade of Australian origin among paleotropical woody bamboos (Poaceae: Bambusoideae: Bambuseae), Plant Syst. Evol., 2013, vol. 299, no. 1, pp. 239–257. doi 10.1007/s00606-012-0718-1

    Article  Google Scholar 

  • Greer, E., Martin, A., Pendle, A., Colas, I., Jones, A.M., Moore, G., and Shaw, P., The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat, Plant Cell, 2012, vol. 24, no. 1, pp. 152–162. doi 10.1105/tpc.111.094771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimanelli, D., Leblanc, O., Perotti, E., and Grossniklaus, U., Developmental genetics of gametophytic apomixes, Trends Genet., 2001, vol. 17, no. 10, pp. 597–604. doi 10.1016/S0168-9525(01)02454-4

    Article  CAS  PubMed  Google Scholar 

  • Hunt, H.V., Badakshi, F., Romanova, O., Howe, C.J., Jones, M.K., and Heslop-Harrison, J.S., Reticulate evolu tion in Panicum (Poaceae): The origin of tetraploid broomcorn millet, P. miliaceum, J. Exp. Bot., 2014, vol. 65, no. 12, pp. 3165–3175. doi 10.1093/jxb/eru161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koltunov, A.M. and Grossniklaus, U., Apomixis: A developmental perspective, Ann. Rev. Plant Biol., 2003, vol. 54, pp. 547–574. doi 10.1146/annurev.arplant.54.110901.160842

    Article  Google Scholar 

  • Lakin, G.F., Biometriya (Biometrics), Moscow: Vyssh. shk., 1990.

    Google Scholar 

  • Lapinsky, B. and Schwarzacher, T., Wheat-rye chromosome translocations in improved lines of 4x-triticale, Plant Cytogenetics: Proc. Spring Symp. Cieszyn, May 19–22, 1997, Katowice, 1998, pp. 210–215.

    Google Scholar 

  • Lukaszewski, A.J., Apolinarska, B., Gustafson, J.P., and Krolow, K.D., Chromosome constitution of tetraplod triticale, Z. Pflanzenzuchtg, 1984, vol. 93, no. 3, pp. 222–236.

    Google Scholar 

  • Molnár, I., Šimkova, H., Leverington-Waite, M., Goram, R., Cseh, A., Vrána, J., Farkas, A., Doležel, J., Molnár-Láng, M., and Griffiths, S., Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers, PLoS One, 2013, vol. 8, no. 8. doi 10.1371/journal.pone.0070844

    Google Scholar 

  • Paterson, A.H., Bowers, J.E., and Chapman, B.A., Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 26, pp. 9903–9908. doi 10.1073/pnas.0307901101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrino, P., Collection and use of genetic resources of Triticum, in Evolution und Taxonomie von pflanzengenetischen Ressourcen. Festschrift fur Peter Hanelt, Gatersleben, 1995, pp. 179–202.

    Google Scholar 

  • Probatova, N.S., Chromosome numbers in the family Poaseae and their significance for taxonomy, phylogeny, and phytogeography (on the example of grains of the Russian Far East), in Komarovskie chteniya (Komarov Readings), Vladivostok: Dal’nauka, 2007, vol. 55, pp. 9–103.

    Google Scholar 

  • Rieseberg, L.H., Hybrid origins of plant species, Annu. Rev. Ecol. Syst., 1997, vol. 28, no. 1, pp. 359–389. doi 10.1146/annurev.ecolsys.28.1.359

    Article  Google Scholar 

  • Sears, E.R., Genetic control of chromosome pairing in wheat, Ann. Rev. Genet., 1976, vol. 10, pp. 31–51.

    Article  CAS  PubMed  Google Scholar 

  • Soltis, P.S. and Soltis, D.E., The role of genetic and genomic attributes in the success of polyploids, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 13, pp. 7051–7057. doi 10.1073/pnas.97.13.7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis, P.S. and Soltis, D.E., The role of hybridization in plant speciation, Annu. Rev. Plant Biol., 2009, vol. 60, no. 1, pp. 561–588. doi 10.1146/annurev.arplant.043008.092039

    Article  CAS  PubMed  Google Scholar 

  • Stebbins, G.L., Chromosomal Evolution in Higher Plants, London: Arnold, 1971.

    Google Scholar 

  • Sycheva, E.A. and Dubovets, N.I., Tetraploid triticale as an object for cytogenetic studies. I. Study of the role of individual wheat chromosomes in the regulation of meiotic pairing, Vestsi Nats. Akad. Nauk Belarusi, Ser. Biyal. Nauk, 2003, vol. 2, pp. 52–55.

    Google Scholar 

  • Tsvelev, N.N., Sistema zlakov (Poaceae) i ikh evolyutsiya (The System of Cereals (Poaceae) and Their Evolution), Leningrad: Nauka, 1987.

    Google Scholar 

  • Wang, J.-B., Wang, C., Shi, S.H., and Zhong, Y., Evolution of parental ITS regions of nuclear rDNA in allopolyploid Aegilops (Poaceae) species, Hereditas, 2000, vol. 133, no. 1, pp. 1–7. doi 10.1111/j.1601-5223.2000.t01-1-00001.x

    Article  CAS  PubMed  Google Scholar 

  • Wendel, J.F., Genome evolution in polyploids, Plant. Mol. Biol., 2000, vol. 42, no. 1, pp. 225–249. doi 10.1023/A:1006392424384

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, K.H., Yesterday’s polyploids and the mystery of diploidization, Nat. Rev. Genet., 2001, vol. 2, no. 5, pp. 333–341. doi 10.1038/35072009

    Article  CAS  PubMed  Google Scholar 

  • Wong, S., Butler, G., and Wolfe, K.H., Gene order evolution and paleopoliploidy in hemiascomycete yeasts, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 16, pp. 9272–9277. doi 10.1073/pnas.142101099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, C., Sun, G. and Sun, D., Distinct origin of the Y and St genome in Elymus species: Evidence from the analysis of a large sample of St genome species using Two Nuclear Genes, PLoS One, 2011, vol. 6, no. 10. doi 10.1371/journal.pone.0026853

    Google Scholar 

  • Zohary, D. and Feldman, M., Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops–triticum) group, Evolution, 1962, vol. 16, no. 1, pp. 44–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Dubovets.

Additional information

Original Russian Text © N.I. Dubovets, Ye.A. Sycheva, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 3, pp. 378–385.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubovets, N.I., Sycheva, Y.A. Microevolutionary differentiation of cereal tetraploid species by the formation of recombinant genomes. Russ J Genet Appl Res 7, 327–334 (2017). https://doi.org/10.1134/S2079059717030030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717030030

Keywords

Navigation