Skip to main content

Functional state of the nigrostriatal system of Krushinsky–Molodkina rats during audiogenic seizure expression

Abstract

Neurochemical mechanisms of initiation and expression of epileptic seizures are pure explored, and there is no published data that could demonstrate a functional state of the neuromediator systems at the initial state of seizure in the animals genetically prone to seizure. In the current work we studied the role of extracellular signal-regulated kinase (ERK1/2) in the regulation of the nigrostriatal glutamate, GABA and dopamine neurons of Krushinsky–Molodkina rats at clonus-tonus and ataxia stages of audiogenic seizure. We demonstrated upregulation of ERK1/2 activity upon audio stimulation that was accompanied with increased activation of Synapsin I in the striatum and substantia nigra in comparison to intact Krushinsky–Molodkina rats. The observed exocytosis activation led to secretion of glutamate in the striatum and as a result to stimulation of seizures. However, at clonus-tonus stage in the striatum we revealed the changes that could participate in further inhibition of the seizure activity, such as increased phosphorylation of tyrosine hydroxylase upon increased ERK1/2 activity followed by activation of dopamine release in the pars compacta of the substantia nigra. At the same time it was observed enhanced D2 and increased D1 dopamine receptor contents. These data revealed attenuation of direct (pro-seizure) and indirect (anti-seizure) pathways of the regulation of the substantia nigra GABA neurons. We demonstrated activation of GABA in the substantia nigra pars reticulata that probably resulted in the inhibition of glutamate neurons of the thalamus that could be one of the mechanisms the initiations of ataxia.

This is a preview of subscription content, access via your institution.

References

  1. Asada, H., Kawamura, Y., Maruyama, K., Kume, H., Ding, R.-G., Kanbara, N., Kuzume, H., Sanbo, M., Yagi, T., and Obata, K., Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase, Proc. Natl Acad. Sci., 1997, vol. 94, no. 12, pp. 6496–6499.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Benagiano, V., Lorusso, L., Flace, P., Girolamo, F., Rizzi, A., Bosco, L., Cagiano, R., Nico, B., Ribatti, D., and Ambrosi, G., VAMP-2, SNAP-25A/B and syntaxin-1 in glutamatergic and GABAergic synapses of the rat cerebellar cortex, BMC Neurosci., 2011, vol. 12, no. 1, p. 118.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bernath, S. and Zigmond, M.J., Dopamine may influence striatal GABA release via three separate mechanisms, Brain Res., 1989, vol. 476, no. 2, pp. 373–376.

    CAS  Article  PubMed  Google Scholar 

  4. Bertran-Gonzalez, J., Bosch, C., Maroteaux, M., Matamales, M., Hervé, D., Valjent, E., and Girault, J.-A., Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol, J. Neurosci., 2008, vol. 28, no. 22, pp. 5671–5685.

    CAS  Article  PubMed  Google Scholar 

  5. Björklund, A. and Dunnett, S.B., Dopamine neuron systems in the brain: An update, Trends Neurosci., 2007, vol. 30, no. 5, pp. 194–202.

    Article  PubMed  Google Scholar 

  6. Bradford, H.F. and Peterson, D., Current views of the pathobiochemistry of epilepsy, Mol. Aspects Med., 1987, vol. 9, no. 2, pp. 119–172.

    CAS  Article  PubMed  Google Scholar 

  7. Chen, J., Rusnak, M., Luedtke, R.R., and Sidhu, A., D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade, J. Biol. Chem., 2004, vol. 279, no. 38, pp. 39317–39330.

    CAS  Article  PubMed  Google Scholar 

  8. Corradini, I., Donzelli, A., Antonucci, F., Welzl, H., Loos, M., Martucci, R., De Astis, S., Pattini, L., Inverardi, F., Wolfer, D., Caleo, M., Bozzi, Y., Verderio, C., Frassoni, C., Braida, D., et al., Epileptiform activity and cognitive deficits in SNAP- 25(+/–) mice are normalized by antiepileptic drugs, Cereb. Cortex, 2014, vol. 24, no. 2, pp. 364–376.

    Article  PubMed  Google Scholar 

  9. DeCastro, M., Nankova, B.B., Shah, P., Patel, P., Mally, P.V., Mishra, R., and La Gamma, E.F., Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway, Mol. Brain Res., 2005, vol. 142, no. 1, pp. 28–38.

    CAS  Article  PubMed  Google Scholar 

  10. Deransart, C. and Depaulis, A., The control of seizures by the basal ganglia? A review of experimental data, Epileptic Disord., 2002, vol. 4, no. 3, pp. 61–72.

    Google Scholar 

  11. Dorofeeva, N.A., Glazova, M.V., Khudik, K.A., Nikitina, L.S., Kirillova, D., and Chernigovskaya, E.V., Comparative study of nigrostriatal systems in Wistar rats and rats prone to seizures, Zh. Evol. Biokhim. Fiziol., 2015, vol. 51, no. 3, pp. 204–213.

    CAS  PubMed  Google Scholar 

  12. Doyle, S., Pyndiah, S., De Gois, S., and Erickson, J.D., Excitation-transcription coupling via calcium/calmodulindependent protein kinase/ERK1/2 signaling mediates the coordinate induction of VGLUT2 and Narp triggered by a prolonged increase in glutamatergic synaptic activity, J. Biol. Chem., 2010, vol. 285, no. 19, pp. 14366–14376.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Durieux, P.F., Schiffmann, S.N., and De Kerchove d’Exaerde, A., Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions, EMBO J., 2012, vol. 31, no. 3, pp. 640–653.

    CAS  Article  PubMed  Google Scholar 

  14. Etholm, L. and Heggelund, P., Seizure elements and seizure element transitions during tonic–clonic seizure activity in the synapsin I/II double knockout mouse: A neuroethological description, Epilepsy Behav., 2009, vol. 14, no. 4, pp. 582–590.

    Article  PubMed  Google Scholar 

  15. Fassio, A., Raimondi, A., Lignani, G., Benfenati, F., and Baldelli, P., Synapsins: From synapse to network hyperexcitability and epilepsy, Semin. Cell Dev. Biol., 2011, vol. 22, pp. 408–415.

    CAS  Article  PubMed  Google Scholar 

  16. Floran, B., Aceves, J., Sierra, A., and Martinez-Fong, D., Activation of D1 dopamine receptors stimulates the release of GABA in the basal ganglia of the rat, Neurosci. Lett., 1990, vol. 116, no. 1, pp. 136–140.

    CAS  Article  PubMed  Google Scholar 

  17. Garcia, C., Blair, H., Seager, M., Coulthard, A., Tennant, S., Buddles, M., Curtis, A., and Goodship, J., Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy, J. Med. Genet., 2004, vol. 41, no. 3, pp. 183–186.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F., and Sibley, D.R., D1 and d2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science, 1990, vol. 250, no. 4986, pp. 1429–1432.

    CAS  Article  PubMed  Google Scholar 

  19. Gerfen, C.R., Miyachi, S., Paletzki, R., and Brown, P., D1 dopamine receptor supersensitivity in the dopaminedepleted striatum results from a switch in the regulation of ERK1/2/MAP kinase, J. Neurosci., 2002, vol. 22, no. 12, pp. 5042–5054.

    CAS  PubMed  Google Scholar 

  20. Girault, J.A., Barbeito, L., Spampinato, U., Gozlan, H., Glowinski, J., and Besson, M.J., In vivo release of endogenous amino acids from the rat striatum: Further evidence for a role of glutamate and aspartate in corticostriatal neurotransmission, J. Neurochem., 1986, vol. 47, no. 1, pp. 98–106.

    CAS  Article  PubMed  Google Scholar 

  21. Glazova, M.V., Nikitina, L.S., Hudik, K.A., Kirillova, O.D., Dorofeeva, N.A., Korotkov, A.A., and Chernigovskaya, E.V., Inhibition of ERK1/2 signaling prevents epileptiform behavior in rats prone to audiogenic seizures, J. Neurochem., 2015, vol. 132, no. 2, pp. 218–229.

    CAS  Article  PubMed  Google Scholar 

  22. Graybiel, A.M., Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci., 1990, vol. 3, no. 7, pp. 244–254.

    Article  Google Scholar 

  23. Greengard, P., The neurobiology of slow synaptic transmission, Science, 2001, vol. 294, no. 5544, pp. 1024–1030.

    CAS  Article  PubMed  Google Scholar 

  24. Guerrero, C., Pesce, L., Lecuona, E., Ridge, K.M., and Sznajder, J.I., Dopamine activates ERKs in alveolar epithelial cells via Ras-PKC-dependent and Grb2/Sos-independent mechanisms, Am. J. Physiol.-Lung Cell Mol. Physiol., 2002, vol. 282, no. 5, pp. L1099–L1107.

    CAS  Article  PubMed  Google Scholar 

  25. Gurney, K., Prescott, T.J., Wickens, J.R., and Redgrave, P., Computational models of the basal ganglia: From robots to membranes, Trends Neurosci., 2004, vol. 27, no. 8, pp. 453–459.

    CAS  Article  PubMed  Google Scholar 

  26. Hauser, W.A., The prevalence and incidence of convulsive disorders in children, Epilepsia, 1994, vol. 35, no. s2, pp. S1–S6.

    Article  PubMed  Google Scholar 

  27. Haycock, J.W., Ahn, N.G., Cobb, M.H., and Krebs, E.G., ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ, Proc. Natl. Acad. Sci., 1992, vol. 89, no. 6, pp. 2365–2369.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Kataoka, M., Yamamori, S., Suzuki, E., Watanabe, S., Sato, T., Miyaoka, H., Azuma, S., Ikegami, S., Kuwahara, R., Suzuki-Migishima, R., Nakahara, Y., Nihonmatsu, I., Inokuchi, K., Katoh-Fukui, Y., Yokoyama, M., and Takahashi, M., A single amino acid mutation in SNAP-25 induces anxiety-related behavior in mouse, PLoS One, 2011, vol. 6, no. 9.

    Google Scholar 

  29. Ketzef, M., Kahn, J., Weissberg, I., Becker, A., Friedman, A., and Gitler, D., Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice, Neuroscience, 2011, vol. 189, pp. 108–122.

    CAS  Article  PubMed  Google Scholar 

  30. Kotecha, S.A., Oak, J.N., Jackson, M.F., Perez, Y., Orser, B.A., Van Tol, H.H., and Macdonald, J.F., A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission, Neuron, 2002, vol. 35, no. 6, pp. 1111–1122.

    CAS  Article  PubMed  Google Scholar 

  31. Krushinskii, L.V., Formirovanie povedeniya zhivotnykh v norme i patologii (Formation of Behavior in Healthy and Diseased Animal), Moscow: MGU, 1960.

    Google Scholar 

  32. Le Moine, C. and Bloch, B., D1 and d2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum, J. Comp. Neurol., 1995, vol. 355, no. 3, pp. 418–426.

    Article  PubMed  Google Scholar 

  33. Lee, F.J., Xue, S., Pei, L., Vukusic, B., Chery, N., Wang, Y., Wang, Y.T., Niznik, H.B., Yu, X.M., and Liu, F., Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor, Cell, 2002, vol. 111, no. 2, pp. 219–230.

    CAS  Article  PubMed  Google Scholar 

  34. Lindgren, H.S., Ohlin, K.E., and Cenci, M.A., Differential involvement of D1 and D2 dopamine receptors in LDOPA- induced angiogenic activity in a rat model of Parkinson’s disease, Neuropsychopharmacology, 2009, vol. 34, no. 12, pp. 2477–2488.

    CAS  Article  PubMed  Google Scholar 

  35. Longuet, C., Broca, C., Costes, S., Hani, E.H., Bataille, D., and Dalle, S.P., Extracellularly regulated kinases 1/2 (p44/42 mitogen-activated protein kinases) phosphorylate synapsin i and regulate insulin secretion in the MIN6 ß-cell line and islets of Langerhans, Endocrinology, 2005, vol. 146, no. 2, pp. 643–654.

    CAS  Article  PubMed  Google Scholar 

  36. Lynd-Balta, E. and Haber, S., The organization of midbrain projections to the striatum in the primate: Sensorimotor- related striatum versus ventral striatum, Neuroscience, 1994, vol. 59, no. 3, pp. 625–640.

    CAS  Article  PubMed  Google Scholar 

  37. Matveeva, E.A., Price, D.A., Whiteheart, S.W., Vanaman, T.C., Gerhardt, G.A., and Slevin, J.T., Reduction of vesicleassociated membrane protein 2 expression leads to a kindling- resistant phenotype in a murine model of epilepsy, Neuroscience, 2012, vol. 202, pp. 77–86.

    CAS  Article  PubMed  Google Scholar 

  38. Murray, B., Alessandrini, A., Cole, A.J., Yee, A.G., and Furshpan, E.J., Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity, Proc. Natl Acad. Sci., 1998, vol. 95, no. 20, pp. 11975–11980.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Nateri, A.S., Raivich, G., Gebhardt, C., Da Costa C., Naumann, H., Vreugdenhil, M., Makwana, M., Brandner, S., Adams, R.H., and Jefferys, J.G., ERK activation causes epilepsy by stimulating NMDA receptor activity, EMBO J., 2007, vol. 26, no. 23, pp. 4891–4901.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. O’Sullivan, G.J., Dunleavy, M., Hakansson, K., Clementi, M., Kinsella, A., Croke, D.T., Drago, J., Fienberg, A.A., Greengard, P., and Sibley, D.R., Dopamine D1 vs D5 receptor-dependent induction of seizures in relation to DARPP-32, ERK1/2 and GluR1-AMPA signaling, Neuropharmacology, 2008, vol. 54, no. 7, pp. 1051–1061.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Osterweil, E.K., Krueger, D.D., Reinhold, K., and Bear, M.F., Hypersensitivity to mGlur5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome, J. Neurosci., 2010, vol. 30, no. 46, pp. 15616–15627.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Schallier, A., Massie, A., Loyens, E., Moechars, D., Drinkenburg, W., Michotte, Y., and Smolders, I., vGLUT2 heterozygous mice show more susceptibility to clonic seizures induced by pentylenetetrazol, Neurochem. Int., 2009, vol. 55, no. 1, pp. 41–44.

    CAS  Article  PubMed  Google Scholar 

  43. Scharfman, H.E., The neurobiology of epilepsy, Curr. Neurol. Neurosci., 2007, vol. 7, no. 4, pp. 348–354.

    CAS  Article  Google Scholar 

  44. Sebolt-Leopold, J.S. and Herrera, R., Targeting the mitogen- activated protein kinase cascade to treat cancer, Nat. Rev. Cancer, 2004, vol. 4, no. 12, pp. 937–947.

    CAS  Article  PubMed  Google Scholar 

  45. Semiokhina, A.F., Fedotova, I.B., and Poletaeva, I.I., Krushinskii–Molodkina rats: Studies of audiogenic epilepsy, vascular pathology, and behavior, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2006, vol. 56, no. 3, pp. 298–316.

    CAS  Google Scholar 

  46. Sgambato, V., Pagès, C., Rogard, M., Besson, M.-J., and Caboche, J., Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation, J. Neurosci., 1998, vol. 18, no. 21, pp. 8814–8825.

    CAS  PubMed  Google Scholar 

  47. Shah, P., Nankova, B.B., Parab, S., and La Gamma, E.F., Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein, Brain Res., 2006, vol. 1107, no. 1, pp. 13–23.

    CAS  Article  PubMed  Google Scholar 

  48. Valjent, E., Corvol, J.-C., Pagès, C., Besson, M.-J., Maldonado, R., and Caboche, J., Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties, J. Neurosci., 2000, vol. 20, no. 23, pp. 8701–8709.

    CAS  PubMed  Google Scholar 

  49. Vara, H., Onofri, F., Benfenati, F., Sassoe-Pognetto, M., and Giustetto, M., ERK activation in axonal varicosities modulates presynaptic plasticity in the CA3 region of the hippocampus through synapsin I, Proc. Natl Acad. Sci., 2009, vol. 106, no. 24, pp. 9872–9877.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Yamagata, Y., Obata, K., Greengard, P., and Czernik, A., Increase in synapsin I phosphorylation implicates a presynaptic component in septal kindling, Neuroscience, 1995, vol. 64, no. 1, pp. 1–4.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Chernigovskaya.

Additional information

Original Russian Text © N.A. Dorofeeva, L.S. Nikitina, D.V. Zosen, M.V. Glazova, E.V. Chernigovskaya, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 2, pp. 204–211.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dorofeeva, N.A., Nikitina, L.S., Zosen, D.V. et al. Functional state of the nigrostriatal system of Krushinsky–Molodkina rats during audiogenic seizure expression. Russ J Genet Appl Res 7, 217–225 (2017). https://doi.org/10.1134/S2079059717030029

Download citation

Keywords

  • Krushinsky–Molodkina strain
  • immunohistochemistry
  • Western blot
  • nigrostriatal system
  • dopaminergic neurons
  • D1 and D2 dopamine receptors
  • ERK1/2
  • glutamate
  • GABA
  • synapsin 1