Prospects of the use of wild relatives for pea breeding

Abstract

The current global climate change results in shift and shrinkage of ranges of crop cultivation. The potential of crop wild relatives as an important source of genetic diversity for breeding is underestimated. Wild relatives of pea include the species P. fulvum and the subspecies P. sativum subsp. elatius, whereas wild representatives of P. abyssinicum are unknown. Wild peas are characterized by spontaneous dehiscence of pods and ballistic seed dispersal. The cultivated pea represents just a phyletic lineage within P. sativum. Pea crop wild relatives are promising with respect to: (1) resistance to pests and pathogens; (2) resistance to abiotic stress; (3) nutritional value; (4) agrotechnical advantages, e.g. branching, ability of hibernation etc.; (5) symbiotic nitrogen fixation; etc. P. fulvum is resistant to pea weevil, rust, powdery mildew and ascochyta blight. Some P. sativum subsp. elatius are resistant to nematodes, broomrape, powdery mildew, Fusarium wilt, root rot, ascochyta blight and white wilt. P. sativum subsp. elatius responds to weevil oviposition by neoplastic pustules of the pod wall controlled by the locus Np. Some P. sativum subsp. elatius accessions have lowered transpiration rates, and an accession from Italy survives at–20°C. Analyses of quantitative trait loci have been carried out for resistance of P. fulvum to pea weevil, powdery mildew and rust and for resistance of P. sativum subsp. elatius to broomrape, bacterial blight and ascochyta blight. Aryamanesh et al. (2012) obtained five introgression lines with pea weevil resistance transferred from P. fulvum to P. sativum. The practical use of wild peas is hampered by insufficient awareness of their diversity and differences from cultivated peas. Studies of useful traits of wild peas and their natural diversity, which is rapidly vanishing, should be intensified.

This is a preview of subscription content, log in to check access.

References

  1. Abbo, S., Lev-Yadun, S., and Gopher, A., Plant domestication and crop evolution in the Near East: On events and process, Crit. Rev. Plant. Sci., 2012, vol. 31, p. 241–257.

    Article  Google Scholar 

  2. Abbo, S., Lev-Yadun, S., Heun, M., and Gopher, A., On the “lost crops” of the neolithic Near East, J. Exp. Bot., 2013, vol. 64, 815–822.

    CAS  Article  Google Scholar 

  3. Abbo, S., Lev-Yadun, S., and Gopher, A., Agricultural origins: Centres and noncentres; a Near Eastern reappraisal, Crit. Rev. Plant. Sci., 2010, vol. 29, pp. 317–328.

    Article  Google Scholar 

  4. Abbo, S., Lev-Yadun, S., and Gopher, A., Origin of Near Eastern plant domestication: Homage to Claude LeviStrauss and “La Penseaé Sauvage”, Genet. Res. Crop. Evol., 2011, vol. 58, pp. 175–179.

    Article  Google Scholar 

  5. Ali, S.M., Sharma, B., and Ambrose, M.J., Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses, Euphytica, 1994, vol. 73, pp. 115–126.

    Article  Google Scholar 

  6. Allaby, R.G., Fuller, D.Q., and Brown, T.A., The genetic expectation of the protracted model of the origin of domesticated crops, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 13982–13986.

    CAS  Article  Google Scholar 

  7. Aryamanesh, N., Zeng, Y., Byrne, O., Hardie, D.C., AlSubhi, A.M., Khan, T., Siddique, K.H.M., and Yan, G., Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping, Theor. Appl. Genet., 2014, vol. 127, pp. 489–497.

    Article  Google Scholar 

  8. Aryamanesh, N., Byrne, O., Hardie, D.C., Khan, T., Siddique, K.H.M., and Yan, G., Large-scale densitybased screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum, Crop Pasture Sci., 2012, vol. 63, 612–618.

    Article  Google Scholar 

  9. Asouti, E. and Fuller, D.Q., From foraging to farming in the southern Levant: The development of the Epipaleolithic and Pre-pottery Neolithic plant managing strategies, Veg. History Archaeobot., 2012, vol. 21, pp. 149–162.

    Article  Google Scholar 

  10. Baranger, A.G., Aubert, G., Arnau, G., Lainé, A.L., Deniot, G., Potier J., Weinachter, C., Lejeune-Hénaut, I., Lallemand, J., and Burstin, J., Genetic diversity within Pisum sativum using protein and PCR based markers, Theor. Appl. Genet., 2004, no. 108, pp. 1309–1321.

    CAS  Article  Google Scholar 

  11. Barilli, E., Sillero, J.C., Moral, A., and Rubiales, D., Characterization of resistance response of pea (Pisum spp.) against rust (Uromyces pisi), Plant Breed., 2009, vol. 128, pp. 665–670.

    Article  Google Scholar 

  12. Barilli, E., Satovic, Z., Rubiales, D., and Torres, A.M., Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross, Euphytica, 2010, vol. 175, pp. 151–159.

    CAS  Google Scholar 

  13. Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M., and Regnier, J.M., Feeding value of pea (Pisum sativum L.), Chemical composition of different categories of pea, Anim. Sci., 1998, vol. 67, pp. 609–619.

    Google Scholar 

  14. Ben-Ze’ev, N. and Zohary, D., Species relationship in the genus Pisum L., Israel J. Bot., 1973, vol. 22, pp. 73–91.

    Google Scholar 

  15. Berdnikov, V.A., Trusov, Y.A., Bogdanova, V.S., Kosterin, O.E., Rozov, S.M., Nedel’kina, S.V., and Nikulina, Y.N., The neoplastic pod gene (Np) may be a factor of resistance to the pest Bruchus pisorum L., Pisum Genet., 1992, vol. 24, pp. 37–39.

    Google Scholar 

  16. Bogdanova, V.S. and Galieva, E.R., Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies, Russ. J. Genet., vol. 45, pp. 623–627.

  17. Bogdanova, V.S., Galieva, E.R., Yadrikhinskiy, A.K., and Kosterin, O.E., Inheritance and genetic mapping of two nuclear genes involved in nuclear-cytoplasmic incompatibility in peas (Pisum sativum L.), Theor. Appl. Genet., 2012, vol. 124, pp. 1503–1512.

    CAS  Article  Google Scholar 

  18. Bogdanova, V.S., Kosterin, O.E., and Yadrikhinskiy, A.K., Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus, Theor. Appl. Genet., 2014, no. 127, pp. 1163–1172.

    CAS  PubMed  Google Scholar 

  19. Borisov, A.Yu., Shtark, O.Yu., Zhukov, V.A., Nemankin, T.A., Naumkina, T.S., Pinaev, A.G., Akhtemova, G.A., Voroshilova, V.A., Ovchinnikova, E.S., Rychagova, T.S., Tsyganov, V.E., Zhernakov, A.I., Kuznetsova, E.V., and Grishina, O.A., Interaction of legumes with beneficial soil microorganisms: From genes to varieties, Agric. Biol., 2011, no. 3, pp. 41–47.

    Google Scholar 

  20. Brown, T.A., Jones, M.K., Powell, W., and Allaby, R.G., The complex origins of domesticated crops in the Fertile Crescent, Trends Ecol. Evol., 2009, no. 24, pp. 103–109.

    PubMed  Article  Google Scholar 

  21. Byrne, O.M., Hardie, D.C., Khan, T.N., and Yan, G., Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross., Aust. J. Agric. Res., 2008, no. 59, pp. 854–862.

    CAS  Article  Google Scholar 

  22. Carrillo, E. and Rubiales, D., Pérez-de-Luque, A., and Fondevilla, S., Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp., Eur. J. Plant Pathol., 2013, vol. 135, no. 761–769.

    CAS  Article  Google Scholar 

  23. Carrillo, E., Satovic, Z., Aubert, G., Boucherot, K., Rubiales, D., and Fondevilla, S., Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea, Plant Cell Rep., 2014, no. 33, pp. 1133–1345.

    CAS  PubMed  Article  Google Scholar 

  24. Clement, S.L., Hardie, D.C., and Elberson, L.R., Variation among accessions of Pisum fulvum for resistance to pea weevil, Crop Sci., 2002, vol. 42, pp. 2167–2173.

    Article  Google Scholar 

  25. Clement, S.L., McPhee, K.E., Elberson, L.R., and Evans, M.A., Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses, Plant Breed., 2009, no. 128, pp. 478–485.

    Article  Google Scholar 

  26. Conicella, C. and Errico, A., Karyotpe variations in Pisum sativum ect. abyssinicum, Caryologia, 1990, vol. 43, pp. 87–97.

    Article  Google Scholar 

  27. Cooper, L.D., Doss, R.P., Price, R., Peterson, K., and Oliver, J.E., Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin, J. Exp. Bot., 2005, vol. 56, pp. 1229–1237.

    CAS  PubMed  Article  Google Scholar 

  28. Coyne, C.J., McClendon, M.T., Walling, J.G., Timmerman-Vaughan, G.M., Murray, S., Meksem, K., Lightfoot, D.A., Shultz, J.L., Keller, K.E., Martin, R.R., Inglis, D.A., Rajesh, P.N., McPhee, K.E., Weeden, and N.F., Grusak, Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes, Genome, 2007, vol. 50, pp. 871–875.

    CAS  PubMed  Article  Google Scholar 

  29. Coyne, C.J., McGee, R.J., Redden, R.J., Ambrose, M.J., Furman, B.J., and Miles, C.A., Genetic adjustment to changing climates: Pea, in Crop Adaptation to Climate Change, Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., and Hall, A.E., Eds., Oxford: Wiley-Blackwell, 2011, pp. 238–250.

  30. Davis, H., Materials for a flora of Turkey. XIX. Leguminosae: Vicieae, Notes Roy. Bot. Garden Edinburgh, 1969, vol. 29, pp. 311–320.

    Google Scholar 

  31. Davis, H., Flora of Turkey and the East Aegean Islands, Edinbourgh, 1970, vol. 3.

    Google Scholar 

  32. Domoney, C., Casey, R., Turner, L., and Ellis, N., Pisum lipoxygenase genes, Theor. Appl. Genet., 1991, vol. 81, pp. 800–805.

    CAS  PubMed  Article  Google Scholar 

  33. Doss, R.P., Oliver, J.E., Proebsting, W.M., Potter, S.W., Kuy, S., Clement, S.L., Williamson, T., Carney, J.R., and DeVilbiss, E.D., Bruchins: Insect-derived plant regulators that stimulate neoplasm formation, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 6218–6233.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Doss, R.P., Oliver, J.E., Proebsting, W.M., Potter, S.W., Kuy, S., Clement, S.L., Williamson, T., Carney, J.R., and DeVilbiss, E.D., Bruchins: Insect-derived plant regulators that stimulate neoplasm formation, Proc. Natl Acad. Sci. U.S.A., 2000, vol. 97, pp. 6218–6223.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Ellis, T.H.N., Poyser, S.J., Knox, M.R., Vershinin, A.V., and Ambrose, M.J., Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea, Mol. General Genet., 1998, vol. 260, pp. 9–19.

    CAS  Google Scholar 

  36. Errico, A., Conicella, C., and Venora, G., Karyotype studies on Pisum fulvum and Pisum sativum using a chromosome image analysis system, Genome, 1991, vol. 34, pp. 105–108.

    Article  Google Scholar 

  37. Fondevilla, S., Martín-Sanz, A., Satovic, Z., FernándezRomero, M.D., Rubiales, D., and Caminero, C., Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv syringae in pea (Pisum sativum L.), Euphytica, 2012, vol. 186, p. 805–812.

    Article  Google Scholar 

  38. Fondevilla, S., Cubero, J.I., and Rubiales, D., Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes, Plant Breed., 2010, vol. 130, pp. 281–282.

    Google Scholar 

  39. Fondevilla, S., Satovic, Z., Rubiales, D., Moreno, M.T., and Torres, A.M., Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp syriacum, Mol. Breed., 2008, vol. 21, pp. 439–454.

    CAS  Article  Google Scholar 

  40. Fondevilla, S., Torres, A.M., Moreno, M.T., and Rubiales, D., Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea, Breed. Sci., 2007b, vol. 57, pp. 181–184.

    Article  Google Scholar 

  41. Fondevilla, S., Cubero, J.I., and Rubiales, D., Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum, in Ascochyta blights of grain legumes, Tivoli, B., Baranger, A., Muehlbauer, F.J., and Cooke, B.M., Eds., Springer, 2007a, pp. 53–58.

    Google Scholar 

  42. Fondevilla, S., Almeida, N.F., Satovic, Z., Rubiales, D., Patto, M.C.V., Cubero, J.I., and Torres, A.M., Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds, Euphytica, 2011, vol. 182, pp. 43–52.

    Google Scholar 

  43. Fondevilla, S., Ávila C.M., Cubero J.I., and Rubiales, D., Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp., Plant Breed., 2005, vol. 124, pp. 313–315.

    Article  Google Scholar 

  44. Ford-Lloyd, B.V., Schmidt, M., Armstrong, S.J., Barazani, O., Engels, J., Hadas, R., Hammer, K., Kell, S.P., Kang, D., Khoshbakht, K., Li, Y., Long, C., Lu, B.-R., Ma, K., and Nguyen, V.T., Crop wild relatives–undervalued, underutilized and under threat? BioScience, 2011, vol. 61, pp. 559–565.

    Google Scholar 

  45. Fuller, D.Q., Contrasting pattern of crop domestication and domestication rates: Recent archaeological insights from the Old World, Ann. Bot., 2007, vol. 100, pp. 903–924.

    PubMed  PubMed Central  Article  Google Scholar 

  46. Fuller, D.Q., Willcox, G., and Allaby, R.G., Cultivation and domestication had multiple origins: Arguments against the core area hypothesis for the origins of agriculture in the Near East, World Archaeol., 2011, vol. 43, pp. 628–658.

    Article  Google Scholar 

  47. Fuller, D.Q., Willcox, G., and Allaby, R.G., Early agricultural pathways: Moving outside the ‘core area’ hypothesis in Southwest Asia, J. Exp. Bot., 2012, vol. 63, pp. 617–633.

    CAS  PubMed  Article  Google Scholar 

  48. Geurts, R., Heidstra, R., Hadri, A.E., Downie, J.A., Franssen, H., van Kammen, A.B., and Bisseling, T., Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis, Plant Physiol., 1997, vol. 115, pp. 351–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Glémin, S. and Battailon, T., A comparative view of the evolution of grasses under domestication, New Phytol., 2012, vol. 183, pp. 273–290.

    Article  CAS  Google Scholar 

  50. Goncharov, N.P., Nikolay Ivanovich Vavilov, Novosibirsk: SO RAN, 2014.

    Google Scholar 

  51. Goncharov, N.P., Glushkov, S.A., and Shumny, V.K., Domestication of cereal crops in the Old World: In search of a new approach to solving old problem, Zh. Obshch. Biol., 2007, vol. 68, no. 2, pp. 126–148.

    CAS  PubMed  Google Scholar 

  52. Gopher, A., Abbo, S., and Lev-Yadun, S., The “when”, the ‘where’ and the ‘why’ of the Neolithic revolution in the Levant, Documenta Praehistorica, 2001, vol. 27, pp. 49–62.

    Google Scholar 

  53. Govorov, L.I., Cultivated Flora of the USSR, Moscow–Leningrad: Gos. Izd. Sovkhoz. Kolkhoz. Lit., 1937, vol. 4, pp. 229–336.

    Google Scholar 

  54. Govorov, L.I., Pea of Afghanistan (on the problem of the origin of the cultivated pea), Bull. Appl. Bot., Genet. Plant Breed., 1928, vol. 19, pp. 497–522.

    Google Scholar 

  55. Hammer, K., The domestication syndrome, Kulturpflanze, 1984, vol. 32, pp. 11–34.

    Article  Google Scholar 

  56. Hance, S.T., Grey, W., and Weeden, N.F., Identification of tolerance to Fusarium solani in Pisum sativum ssp. elatius, Pisum Genetics, 2004, vol. 36, pp. 9–13.

    Google Scholar 

  57. Harlan, J.R., Agricultural origin: Centres and noncentres, Science, 1971, vol. 174, pp. 468–474.

    CAS  PubMed  Article  Google Scholar 

  58. Hatfield, J.L., Changing climate in North America: Implications for crops, in Crop Adaptation to Climate Change, Yadav, S.S., Redden, R.J., Hatfield, J.L., LotzeCampen, H., and Hall, A.E., Eds., Oxford: WileyBlackwell, 2011, pp. 57–65.

    Google Scholar 

  59. Heng, L., Vincken, J.P., van Koningsveld, G., Legger, A., Gruppen, H., van Boekel, T., Roozen, J., and Voragen, F., Bitterness of saponins and their content in dry peas, J. Sci. Food Agric., 2006, vol. 86, pp. 1225–1231.

    CAS  Article  Google Scholar 

  60. Hoey, B.K., Crowe, K.R., Jones, V.M., and Polans, N.O., A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers, Theor. Appl. Genet., 1996, vol. 92, pp. 92–100.

    CAS  PubMed  Article  Google Scholar 

  61. Jing, R., Johnson, R., Seres, A., Kiss, G., Ambrose, M.J., Knox, M.R., Ellis, T.H.N., and Flavell, A.J., Genebased sequence diversity analysis of field pea (Pisum), Genetics, 2007, vol. 177, pp. 2263–2275.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Jing, R., Vershinin, A., Grzebota, J., Shaw, P., Smýkal, P., Marshall, D., Ambrose, M.J., Ellis, T.H.N., and Flavell, A.J., The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis, BMC Evol. Biol., 2010, vol. 10, art. 44.

    Google Scholar 

  63. Kneen, B.E. and LaRue, T.A., Peas (Pisum sativum L.) with strain specificity to Rhizobium leguminosarum, Heredity, 1984, no. 52, pp. 383–389.

    Article  Google Scholar 

  64. Kosterin, O.E. and Bogdanova, V.S., Reciprocal compatibility within the genus Pisum L. as studied in F1 hybrids: 1. Crosses involving P. sativum L. subsp. sativum, Genet. Res. Crop Evol., 2014. doi 10.1007/s10722014-0189z

    Google Scholar 

  65. Kosterin, O.E., Zaytseva, O.O., Bogdanova, V.S., and Ambrose, M., New data on three molecular markers from different cellular genomes in Mediterranean accessions reveal new insights into phylogeography of Pisum sativum L. subsp. elatuis (Beib.) Schmahl, Genet. Res. Crop Evol., 2010, vol. 57, pp. 733–739.

    CAS  Article  Google Scholar 

  66. Kosterin, O.E. and Bogdanova, V.S., Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes, Genet. Res. Crop Evol., 2008, vol. 55, pp. 735–755.

    CAS  Article  Google Scholar 

  67. Ladizinsky, G., Seed dispersal in relation to domestication of Middle East legumes, Econ. Bot., 1979, vol. 33, pp. 284–289.

    Article  Google Scholar 

  68. Lamm, R., Cytogenetical studies on translocations in Pisum, Hereditas, 1951, vol. 37, pp. 356–372.

    Article  Google Scholar 

  69. Lev-Yadun, S., Gopher, A., and Abbo, S., The cradle of agriculture, Science, 2000, vol. 288, pp. 1602–1603.

    CAS  PubMed  Article  Google Scholar 

  70. Lie, T.A., Symbiotic nitrogen fixation under stress conditions, Plant Soil, 1971, spec. vol., pp. 117–127.

    Google Scholar 

  71. Lie, T.A., Symbiotic specialization in pea plants: The requirement of specific Rhizobium strains for peas from Afghanistan, Ann. Appl. Biol., 1978, vol. 88, pp. 462–465.

    Article  Google Scholar 

  72. Lie, T.A., Göktan, D., Engin, M., Pijnenborg, J., and Anlarsal, E., Co-evolution of the legume-Rhizobium association, Plant Soil, 1987, vol. 100, pp. 171–181.

    Article  Google Scholar 

  73. Lie, T.A., Host genes in Pisum sativum conferring resistance to European Rhizobium leguminosarum strains, Plant Soil, 1984, vol. 82, pp. 415–425.

    Article  Google Scholar 

  74. Lie, T.A., Gene centres, a source for genetic variants in symbiotic nitrogen fixation: Host induced ineffectivity in Pisum sativum ecotype fulvum, Plant Soil, 1981, vol. 61, pp. 125–134.

    Google Scholar 

  75. Lobell, D.B. and Field, C.B., Global scale climate–crop yield relationships and the impacts of recent warming, Environ. Res. Lett., 2007, vol. 2, art. 014002.

    Article  Google Scholar 

  76. Lu, J., Knox, M.R., Ambrose, M.J., Brown, J.K.M., and Ellis, T.H.N., Comparative analysis of genetic diversity in pea assessed by RFLPand PCR-based methods, Theor. Appl. Genet., 1996, vol. 93, pp. 1103–1111.

    CAS  PubMed  Article  Google Scholar 

  77. Makasheva, R.Kh., Pea, Cultivated Flora of the USSR, 1979, Leningrad: Kolos, vol. 4, part 1.

    Google Scholar 

  78. Marx, G.A., New linkage relations for chromosome III of Pisum, Pisum Newsl., 1971, vol. 3, pp. 18–19.

    Google Scholar 

  79. Maxted, N., Kell, S., Ford-Lloyd, B., Dulloo, E., and Toledo, B., Toward the systematic conservation of global crop wild relative diversity, Crop Sci., 2012, vol. 52, pp. 774–785.

    Article  Google Scholar 

  80. Maxted, N. and Ambrose, M., Peas (Pisum L.), in Plant Genetic Res. of Legumes in the Mediterranean. Current Plant Science and Biotechnology in Agriculture, Maxted, N. and Bennett, S.J., Eds., 2001, Dordrecht: Kluwer Acad. Publ., pp. 181–190.

    Google Scholar 

  81. Maxted, N. and Kell, S.P., Establishment of a Global Network for the in situ Conservation of Crop Wild Relatives: Status and Needs, Rome: FAO Commission on Genetic Resources for Food and Agriculture, 2009.

    Google Scholar 

  82. McPhee, K.E., Tullu, A., Kraft, J.M., and Muehlbauer, F.J., Resistance to Fusarium wilt race 2 in the Pisum core collection, J. Am. Soc. Hortic. Sci., 1999, vol. 124, pp. 28–31.

    Google Scholar 

  83. Murfet, I.C. and Reid, J.B., Developmental mutants, in Peas: Genetics, Molecular Biology and Biotechnology, Casey, R. and Davies, D.R., Eds., Wallingford: CAB International, 1993, pp. 165–216.

    Google Scholar 

  84. Nikulina, Y.N., The neoplastic pod gene (Np) may be a factor of resistance to the pest Bruchus pisorum L., Pisum Genet., 1992, vol. 24, pp. 37–39.

    Google Scholar 

  85. North, H., Casey, R., and Domoney, C., Inheritance and mapping of seed lypoxigenase peptides in Pisum, Theor. Appl. Genet., 1989, vol. 77, pp. 805–808.

    CAS  PubMed  Article  Google Scholar 

  86. Oliver, J.E., Doss, R.P., Marquez, B., and DeVilbiss, E.D., Bruchins, plant mitogens from weevils: Structural requirements for activity, J. Chem. Ecol., 2002, vol. 28, pp. 2503–2513.

    CAS  PubMed  Article  Google Scholar 

  87. Oliver, J.E., Doss, R.P., Williamson, R.T., Carney, J.R., and DeVilbiss, E.D., Bruchins–mitogenic 3-(hydroxypropanoyl) esters of long chain diols from weevils of the Bruchidae, Tetrahedron, 2000, vol. 56, pp. 7633–7641.

    CAS  Article  Google Scholar 

  88. Porter, L.D., Hoheisel, G., and Coffman, V.A., Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection, Plant Pathol., 2009, vol. 58, pp. 52–60.

    Article  Google Scholar 

  89. Provvidenti, R. and Hampton, R.O., Inheritance of resistance to white lupin mosaic virus in common pea, HortScience, 1993, vol. 28, pp. 836–837.

    Google Scholar 

  90. Provvidenti, R. and Alconero, R., Inheritance of resistance to a lentil strain of pea seed-borne mosaic virus in Pisum sativum, J. Hered., 1988, vol. 79, pp. 45–47.

    Google Scholar 

  91. Ramirez-Villegas, J., Jarvis, A., and Läderach, P., Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum, Agric. For. Meteorol., 2013, vol. 170, pp. 67–78.

    Article  Google Scholar 

  92. Redden, R.J., Yadav, S.S., Hatfield, J.L., Prasanna, B.M., Vasal, S.K., and Lafarge, T., The potential of climate change adjustment in crops: A synthesis. Changing climate in North America: Implications for crops, in Crop Adaptation to Climate Change, Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., and Hall, A.E., Eds., Oxford: Wiley-Blackwell, 2011, pp. 492–514.

    Google Scholar 

  93. Schultz, J.C., Schonrogge, K., and Lichtenstein, C.P., Plant response to bruchins, Trends Plant Sci., 2001, vol. 6, p. 406.

    CAS  PubMed  Article  Google Scholar 

  94. Shlykov, G.R., Introduction of Plants, Moscow–Leningrad: Selkhozgiz, 1936.

    Google Scholar 

  95. Shlykov, G.R., Introduction of Plants and Genetics, Moscow: VASKhNiL, 1937, pp. 218–230.

    Google Scholar 

  96. Smýkal, P., Kenicer, G., Flavell, A.J., Corander, J., Kosterin, O., Redden, R.J., Ford, R., Coyne, C.J., Maxted, N., Ambrose, M.J., and Ellis, N.T.H., Phylogeny, phylogeography and genetic diversity of the Pisum genus, Plant Genet. Resour., Charact. Util., 2010, vol. 2010, pp. 1–15.

    Google Scholar 

  97. Smýkal, P., Aubert, G., Burstin, J., Coyne, C.J., Ellis, N.T., Flavell, A.J., Ford, R., Hýbl, M., Macas, I., Neumann, P., McPhee, K.E., Redden, R.J., Rubiales, D., Weller, J.L., and Warkentin, T.D., Pea (Pisum sativum L.) in the genomic era, Agronomy, 2012, vol. 2, pp. 74–115.

    Article  Google Scholar 

  98. Takhtajan, A., he Floristic Regions of the World, Leningrad: Nauka, 1978.

    Google Scholar 

  99. Tanno, K. and Wilcox, G., How fast was wild wheat domesticated?, Science, 2006, vol. 311, p. 1886.

    CAS  PubMed  Article  Google Scholar 

  100. Townsend, C., Contribution to the flora of Iraq. V. Notes on Leguminosales, Kew Bull. Roy. Bot. Gard., 1968, vol. 2, pp. 435–458.

    Google Scholar 

  101. Valderrama, M.R., Roman, B., Satovic, Z., Rubiales, D., Cubero, J.I., and Torres, A.M., Locating quantitative trait loci associated with Orobanche crenata resistance in pea, Weed Res., 2004, vol. 44, pp. 323–328.

    CAS  Article  Google Scholar 

  102. Vavilov, N.I., Centres of origin of cultivated plants, Bull. Appl. Bot., Genet. Plant Breed., 1926, vol. 16, no. 2.

    Google Scholar 

  103. Vavilov, N.I., World centres of cultivar treasures (genes) of cultivated plants, Izv. GIOA, 1927, vol. 5, no. 5, pp. 339–351.

    Google Scholar 

  104. Vavilov, N.I., Problem of the origin of cultivated plants in modern comprehention, in Advances and Perspectives in the Field of Applied Botany, Genetics and Breeding, Leningrad: VIPGiNK and GIOA, 1929, pp. 11–22.

    Google Scholar 

  105. Vershinin, A.V., Allnutt, T.R., Knox, M.R., and Ambrose, M.J., Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication, Mol. Biol. Evol., 2003, vol. 20, pp. 2067–2075.

    CAS  PubMed  Google Scholar 

  106. Vilkova, N.A., Kolesnichenko, L.I., and Shapiro, I.D., Methodic Recommendation on Revealing of Resistance of Pea Cultivars to Pea Weevil, Leningrad: Vses. Institut Rastenievod. VASKhNiL, 1977.

    Google Scholar 

  107. Vito, M.D. and Perrino, P., Reaction of Pisum spp. to the attacks of Heterodera goettingiana, Nematologia Mediterranea, 1978, vol. 6, pp. 113–118.

    Google Scholar 

  108. Waines, J.G., The biosystematics and domestication of peas (Pisum L.), Bul. Torrey Bot. Club, 1975, vol. 102, pp. 385–395.

    Article  Google Scholar 

  109. Weeden, N.F., Brauner, S.O.R.E.N., and Przyborowski, J.A., Genetic analysis of pod dehiscence in pea (Pisum sativum L.), Cell. Mol. Biol. Lett., 2002, vol.7, no. 2b, pp. 657–664.

    CAS  PubMed  Google Scholar 

  110. Weeden, N.F., Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the 'domestication syndrome' for legumes?, Ann. Bot., 2007, vol. 100, pp. 1017–1025.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Weiss, E., Kislev, M.E., and Hartmann, A., Autonomous cultivation before domestication, Science, vol. 312, pp. 1608–1610.

  112. Wroth, J.M., Possible role of wild genotypes of Pisum spp. to enchance ascochyta blight resistance in pea, Aust. J. Exp. Agric., 1998, vol. 38, pp. 469–479.

    Article  Google Scholar 

  113. Yang, J.P.W. and Mattews, P., A distinct class of peas (Pisum sativum L.) showing strain specificity for symbiotic Rhizobium leguminosarum, Heredity, 1982, vol. 48, pp. 203–210.

    Article  Google Scholar 

  114. Yang, J.P.W., Johnson, W.B., and Brewin, N.J., A search for peas (Pisum sativum L.) showing strain specificity for symbiotic Rhizobium leguminosarum, Heredity, 1982, vol. 48, pp. 197–201.

    Article  Google Scholar 

  115. Zaytseva, O.O., Bogdanova, V.S., and Kosterin, O.E., Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene, Gene, 2012, vol. 504, pp. 192–202.

    CAS  PubMed  Article  Google Scholar 

  116. Zaytseva, O.O., Gunbin, K.V., Mglinets, A.V., and Kosterin, O.E., Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution, Gene, 2015, vol. 556, pp. 235–244.

    CAS  PubMed  Article  Google Scholar 

  117. Zhukovsky, P.M., Kulturnye rasteniya i ikh sorodichi (Cultivated Plants and Their Relatives), Leningrad: Kolos, 1971, 3rd ed.

    Google Scholar 

  118. Zohary, M., Geobotanical Foundations of the Middle East, Stuttgart: Gustav Fischer Verlag, 1973, vols. 1–2.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. E. Kosterin.

Additional information

Published in Russian in Vavilovskii Zhurnal Genetiki i Selektsii, 2015, Vol. 19, No. 2, pp. 154–164.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kosterin, O.E. Prospects of the use of wild relatives for pea breeding. Russ J Genet Appl Res 6, 233–243 (2016). https://doi.org/10.1134/S2079059716030047

Download citation

Keywords

  • Pisum sativum
  • Pisum sativum subsp. elatius
  • Pisum fulvum
  • Pisum abyssinicum
  • pea
  • crop wild relaives
  • resistance to pathogens
  • resistance to pests
  • QTL analysis
  • breeding
  • prebreeding
  • genetic diversity