Recombinant strains of Saccharomyces cerevisiae for ethanol production from plant biomass

  • A. S. RozanovEmail author
  • A. V. Kotenko
  • I. R. Akberdin
  • S. E. Peltek


Saccharomyces cerevisiae is the most convenient organism widely used for ethanol production from sugars in industry thanks to the high rates of growth and ethanol fermentation and biosynthesis under unaerobic conditions, as well as its tolerance to a high ethanol concentration and low pH level. Lignocellulosic biomass is considered to be the most advantageous source of sugars. The sugar which can be obtained from it is the combination of hexoses and pentoses. However, the S. cerevisiae strains in current use are poorly adapted to the fermentation of pentasaccharides, which make it imperative to optimize the metabolic processes in the currently available bioethanol producers for pentasaccharides utilization. This work reviews the approaches which were currently developed to address this issue using recombinant strains of S. cerevisiae.


Saccharomyces cerevisiae lignocellulosic biomass xylose utilization bioethanol producer strains genetic modification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, S., Riaz, S., and Jamil, A., Molecular cloning of fungal xylanases: an overview, Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 1, pp. 19–35.CrossRefPubMedGoogle Scholar
  2. Almeida, J.R., Modig, T., Petersson, A., et al., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae, J. Chem. Technol. Biotechnol., 2007, vol. 82, no. 4, pp. 340–349.CrossRefGoogle Scholar
  3. Baek, S.H., Kim, S., Lee, K., et al., Cellulosic ethanol production by combination of cellulase-displaying yeast cells, Enzyme Microb. Technol., 2012, vol. 51, no. 6, pp. 366–372.CrossRefPubMedGoogle Scholar
  4. Bera, A., Ho, N., Khan, A., and Sedlak, M., A genetic overhaul of Saccharomyces cerevisiae 424A (LNH-ST) to improve xylose fermentation, J. industrial microbiology biotechnology, 2011, vol. 38, no. 5, pp. 617–626.CrossRefPubMedGoogle Scholar
  5. Çakar, Z., Seker, U., Tamerler, C., et al., Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae, FEMS Yeast Res., 2005, vol. 5, nos. 6–7, pp. 569–578.CrossRefPubMedGoogle Scholar
  6. Çakar, Z., Turanli, Y., Alkim, C., and Yilmaz, Ü., Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties, FEMS Yeast Res., 2012, vol. 12, no. 2, pp. 171–182.CrossRefPubMedGoogle Scholar
  7. Çelik, E. and Çalik, P., Production of recombinant proteins by yeast cells, Biotechnol. Adv., 2012, vol. 30, no. 5, pp. 1108–1118.CrossRefPubMedGoogle Scholar
  8. Chen, X., Meng, K., Shi, P., et al., High-level expression of a novel Penicillium endo-1, 3 (4)-D-glucanase with high specific activity in Pichia pastoris, J. Industr. Microbiol. Biotechnol., 2012, vol. 39, no. 6, pp. 869–876.CrossRefGoogle Scholar
  9. Cho, K.M., Yoo, Y.J., and Kang, H.S., δ-integration of endo/exoglucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol, Enzyme Microb. Technol., 1999, vol. 25, no. 1, pp. 23–30.CrossRefGoogle Scholar
  10. Deng, X. and Ho, N., Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene, Appl. Biochem. Biotechnol., 1990, vol. 24, no. 1, pp. 193–199.CrossRefPubMedGoogle Scholar
  11. Fiaux, J., Xakar, Z.P., Sonderegger, M., et al., Metabolicflux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis, Eukaryotic cell, 2003, vol. 2, no. 1, pp. 170–180.PubMedCentralCrossRefPubMedGoogle Scholar
  12. De Figueiredo, V., de Mello, V., Reis, V., et al., Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucosexylose blend, Bioresource Technol., 2013, vol. 1, pp. 792–796.CrossRefGoogle Scholar
  13. Fujii, T., Yu, G., Matsushika, A., et al., Ethanol production from xylo-oligosaccharides by xylose-fermenting Saccharomyces cerevisiae expressing -xylosidase, Biosci. Biotechnol. Biochem., 2011, vol. 75, no. 6, pp. 1140–1146.CrossRefPubMedGoogle Scholar
  14. Geddes, C.C., Nieves, I.U., and Ingram, L.O., Advances in ethanol production, Curr. Opin. Biotechnol., 2011, vol. 22, no. 3, pp. 312–319.CrossRefPubMedGoogle Scholar
  15. Goyal, G., Tsai, S.L., Madan, B., et al., Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome, Microb. Cell Fact., 2011, vol. 10, p. 89.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Gurgu, L., Polaina, J., and Marin-Navarro, J., Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL 1) from Saccharomycopsis fibuligera, Bioresource Technol., 2011, vol. 1, no. 8, pp. 5229–5236.CrossRefGoogle Scholar
  17. Hector, R.E., Qureshi, N., Hughes, S., et al., Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption, Appl. Microbiol. Biotechnol., 2008, vol. 80, no. 4, pp. 675–684.CrossRefPubMedGoogle Scholar
  18. Ilmén, M., Den, HaanR., Brevnova, E., et al., High level secretion of cellobiohydrolases by Saccharomyces cerevisiae, Biotechnol. Biofuels, 2011, vol. 4, p. 30.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Inokuma, K., Hasunuma, T., and Kondo, A., Efficient yeast cell surface display of exo-and endo-cellulase using the SED1 anchoring region and its original promoter, Biotechnol. Biofuels, 2014, vol. 7, no. 1, p. 8.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Jayaram, V., Cuyvers, S., Verstrepen, K., et al., Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties, Food Chem., 2014, vol. 1, pp. 421–428.CrossRefGoogle Scholar
  21. Karaoglan, M., Yildiz, H., and Inan, M., Screening of signal sequences for extracellular production of Aspergillus niger xylanase in Pichia pastoris, Biochem. Eng. J., 2014.Google Scholar
  22. Katahira, S., Fujita, Y., Mizuike, A., et al., Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells, Appl. Environ. Microbiol., 2004, vol. 70, no. 9, pp. 5407–5414.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Katahira, S., Ito, M., Takema, H., et al., Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1, Enzyme Microb. Technol., 2008, vol. 43, no. 2, pp. 115–119.CrossRefGoogle Scholar
  24. Khattab, S., Saimura, M., and Kodaki, T., Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP-dependent xylitol dehydrogenase, J. Biotechnol., 2013, vol. 165, no. 3, pp. 153–156.CrossRefPubMedGoogle Scholar
  25. Kim, S., Skerker, J.M., Kang, W., et al., Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae, PloS one, 2013a, vol. 8, no. 2, p. e57048.CrossRefPubMedGoogle Scholar
  26. Kim, S., Lee, K., Kong, I., et al., Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation, J. Biotechnol., 2013b, vol. 164, no. 1, pp. 105–111.CrossRefPubMedGoogle Scholar
  27. Kirikyali, N. and Connerton, I.F., Heterologous expression and kinetic characterisation of Neurospora crassa β-xylosidase in Pichia pastoris, Enzyme Microb. Technol., 2014, vol. 57, pp. 63–68.CrossRefPubMedGoogle Scholar
  28. Kitagawa, T., Kohda, K., Tokuhiro, K., et al., Identification of genes that enhance cellulase protein production in yeast, J. Biotechnol., 2011, vol. 151, no. 2, pp. 194–203.CrossRefPubMedGoogle Scholar
  29. Kötter, P. and Ciriacy, M., Xylose fermentation by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 1993, vol. 38, no. 6, pp. 776–783.CrossRefGoogle Scholar
  30. Kötter, P., Amore, R., Hollenberg, C.P., and Ciriacy, M., Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant, Curr. Genet., 1990, vol. 18, no. 6, pp. 493–500.CrossRefPubMedGoogle Scholar
  31. Kruckeberg, A.L., The hexose transporter family of Saccharomyces cerevisiae, Arch. Microbiol., 1996, vol. 166, no. 5, pp. 283–292.CrossRefPubMedGoogle Scholar
  32. Kuyper, M., Harhangi, H.R., Stave, A., et al., High level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?, FEMS Yeast Res., 2003, vol. 4, no. 1, pp. 69–78.CrossRefPubMedGoogle Scholar
  33. Kuyper, M., Winkler, A., Dijken, J., and Pronk, J., Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle, FEMS yeast research, 2004, vol. 4, no. 6, pp. 655–664.CrossRefPubMedGoogle Scholar
  34. Kuyper, M., Hartog, M., Toirkens, M., et al., Metabolic engineering of a xylose isomerase expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation, FEMS Yeast Res., 2005a, vol. 5, nos. 4–5, pp. 399–409.CrossRefPubMedGoogle Scholar
  35. Kuyper, M., Toirkens, M., Diderich, J., et al., Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain, FEMS Yeast Res., 2005b, vol. 5, no. 10, pp. 925–934.CrossRefPubMedGoogle Scholar
  36. Lee, S., Kodaki, T., Park, Y., et al., Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae, J. Biotechnol., 2012, vol. 158.Google Scholar
  37. Lin, Y. and Tanaka, S., Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 627–642.CrossRefPubMedGoogle Scholar
  38. Liu, E. and Hu, Y., Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation, Biochem. Engin. J., 2010, vol. 48, no. 2, pp. 204–210.CrossRefGoogle Scholar
  39. Lu, C. and Jeffries, T., Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain, Appl. Environ. Microbiol., 2007, vol. 73, no. 19, pp. 6072–6077.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Madhavan, A., Tamalampudi, S., Ushida, K., et al., Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol, Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 6, pp. 1067–1078.CrossRefPubMedGoogle Scholar
  41. Matano, Y., Hasunuma, T., and Kondo, A., Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass, Bioresource Technol., 2012, vol. 1, pp. 128–133.CrossRefGoogle Scholar
  42. Matsushika, A., Inoue, H., Kodaki, T., and Sawayama, S., Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives, Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 1, pp. 37–53.CrossRefPubMedGoogle Scholar
  43. Mimitsuka, T., Sawai, K., Kobayashi, K., et al., Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield, J. Biosci. Bioeng., 2014.Google Scholar
  44. Mormeneo, M., Pastor, F., and Zueco, J., Efficient expression of a paenibacillus barcinonensis endoglucanase in Saccharomyces cerevisiae, J. Industr. Microbiol. Biotechnol., 2012, vol. 39, no. 1, pp. 115–123.CrossRefGoogle Scholar
  45. Nakatani, Y., Yamada, R., Ogino, C., and Kondo, A., Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose, Microb. Cell Fact., 2013, vol. 12, p. 66.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Ojeda, K., Sánchez, E., El-Halwagi, M., and Kafarov, V., Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF and SSCF pathways, Chem. Eng. J., 2011, vol. 176, pp. 195–201.CrossRefGoogle Scholar
  47. Ota, M., Sakuragi, H., Morisaka, H., et al., Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation, Biotechnol. Progress, 2013, vol. 29, no. 2, pp. 346–351.CrossRefGoogle Scholar
  48. Runquist, D. Fonseca, C., et al., Expression of the gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 1, pp. 123–130.CrossRefPubMedGoogle Scholar
  49. Runquist, D., Hahn-Hagerdal, B., and Radstrom, P., Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae, Biotechnol. Biofuels, 2010, vol. 3, no. 5.Google Scholar
  50. Salusjärvi, L., Kaunisto, S., Holmström, S., et al., Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae, J. Industr. Microbiol. Biotechnol., 2013, vol. 40, no. 12, pp. 1383–1392.CrossRefGoogle Scholar
  51. Sauer, U., Evolutionary engineering of industrially important microbial phenotypes, in Metabolic Engineering, Berlin: Springer, 2001, pp. 129–169.CrossRefGoogle Scholar
  52. Sonderegger, M. and Sauer, U., Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose, Appl. Environ. Microbiol., 2003, vol. 69, no. 4, pp. 1990–1998.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Steen, E.J., Chan, R., Prasad, N., et al., Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol, Microb. Cell Fact., 2008, vol. 7, no. 1, p. 36.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Sun, J., Wen, F., Si, T., et al., Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome, Appl. Environ. Microbiol., 2012, vol. 78, no. 11, pp. 3837–3845.PubMedCentralCrossRefPubMedGoogle Scholar
  55. Suzuki, H., Imaeda, T., Kitagawa, T., and Kohda, K., Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae, J. Biotechnol., 2012, vol. 157, no. 1, pp. 64–70.CrossRefPubMedGoogle Scholar
  56. Walfridsson, M., Bao, X., Anderlund, M., et al., Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase, Appl. Environ. Microbiol., 1996, vol. 62, no. 12, pp. 4648–4654.PubMedCentralPubMedGoogle Scholar
  57. Wang, P. and Schneider, H., Growth of yeasts on D-xylulose, Canadian J. Microbiol., 1980, vol. 26, no. 9, pp. 1165–1168.CrossRefGoogle Scholar
  58. Wang, T.Y., Huang, C.J., Chen, H.L., et al., Systematic screening of glycosylation-and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion, BMC Biotechnol., 2013, vol. 13, no. 1, p. 71.PubMedCentralCrossRefPubMedGoogle Scholar
  59. Wilde, C., Gold, N.D., Bawa, N., et al., Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain, Appl. Microbiol. Biotechnol., 2012, vol. 95, no. 3, pp. 647–659.CrossRefPubMedGoogle Scholar
  60. Van Wyk, N., Den Haan, R., and Van Zyl, W.H., Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 5, pp. 1813–1820.CrossRefPubMedGoogle Scholar
  61. Xu, L., Shen, Y., Hou, J., et al., Promotion of extracellular activity of cellobiohydrolase I from Trichoderma reesei by protein glycosylation engineering in Saccharomyces cerevisiae, Curr. Synthetic Sys. Biol., 2014, vol. 2, no. 111, p. 1000111.Google Scholar
  62. Yamada, R., Taniguchi, N., Tanaka, T., et al., Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulose expression, Biotechnol. Biofuels, 2011, vol. 4, no. 8.Google Scholar
  63. Young, E.M., Tong, A., Bui, H., et al., Rewiring yeast sugar transporter preference through modifying a conserved protein motif, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, no. 1, pp. 131–136.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Yu, J., Singh, D., Liu, N., et al., Construction of a glucose and xylose co-fermenting industrial Saccharomyces cerevisiae by expression of codon-optimized fungal xylose isomerase, J. Biobased Materials Bioenergy, 2011, vol. 5, no. 3, pp. 357–364.CrossRefGoogle Scholar
  65. Zhou, H., Cheng, J.S., Wang, B.L., et al., Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae, Metab. Eng., 2012, vol. 14, no. 6, pp. 611–622.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. S. Rozanov
    • 1
    Email author
  • A. V. Kotenko
    • 1
  • I. R. Akberdin
    • 1
  • S. E. Peltek
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations