Skip to main content
Log in

Abstract

The main classes of repetitive DNA sequences, including coding (rRNA genes) and noncoding (tandem and interspersed repeats) sequences are reviewed. Emphasis is placed on their special role in the formation of the structural and functional organization of the genomes of higher plants and in the support of their higher genetic variation, compared to animal genomes, at the levels of individual sequences and of the whole genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alkhimova, O.G., Mazurok, N.A., Potapova, T.A., Zakian, S.M., et al., Diverse patterns of the tandem repeats organization in rye chromosomes, Chromosoma, 2004, vol. 113, pp. 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Anamthawat–Josson, K. and Heslop–Harrison, J.S., Isolation and characterization of genome–specific DNA sequences in Triticeae species, Mol. Gen. Genet., 1993, vol. 240, pp. 151–158.

    Article  Google Scholar 

  • Ananiev, E.V., Phillips, R.L., and Rines, H.W., Chromosome–specific molecular organization of maize (Zea mays L.) centromeric regions, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13073–13078.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Appels, R., Gerlach, W.L., Dennis, E.S., et al., Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals, Chromo–soma, 1980, vol. 78, pp. 293–311.

    Article  CAS  Google Scholar 

  • Appels, R. and Dvorak, J., Relative rates of divergence of spacer and gene sequences within the rDNA region of species in the Triticeae: implications for the maintenance of homogeneity of a repeated gene family, Theor. Appl. Genet., 1982a, vol. 63, pp. 361–365.

    Article  CAS  PubMed  Google Scholar 

  • Appels, R. and Dvorak, J., The wheat ribosomal DNA spacer region: its structure and variation in populations and among species, Theor. Appl. Genet., 1982b, vol. 63, pp. 337–348.

    Article  CAS  PubMed  Google Scholar 

  • Appels, R., Baum, B.R., and Clarke, B.C., The 5SDNA units of bread wheat (Triticum aestivum L.), Plant Syst. Evol., 1992, vol. 183, pp. 183–194.

    Article  CAS  Google Scholar 

  • Bedbrook, J.H., Jones, J., and O’Del, M., A molecular distribution of telomeric heterochromatin in Secale species, Cell, 1980, vol. 19, pp. 545–560.

    Article  CAS  PubMed  Google Scholar 

  • Belo, A., Beatty, M., Hondred, D., Fengler, K., et al., Allelic genome structural variations in maize detected by array comparative genome hybridization, Theor. Appl. Genet., 2010, vol. 120, pp. 355–367.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M. and Leitch, I.J., Nuclear DNA amounts in angiosperms: targets, trends and tomorrow, Ann. Bot., 2011, vol. 107, pp. 467–590.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennetzen, J.L., The contribution of retroelements to plant genome organization, function and evolution, Trends Microbiol., 1996, vol. 4, pp. 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Biemont, C., Genome size evolution: within–species variation in genome size, Heredity, 2008, vol. 101, pp. 297–298.

    Article  CAS  PubMed  Google Scholar 

  • Bureau, T.E. and Wessler, S.R., Tourist: a large family of inverted–repeat elements frequently associated with maize genes, Plant Cell, 1992, vol. 4, pp. 1283–1294.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bureau, T.E. and Wessler, S.R., Stowaway: a new family of inverted–repeat elements associated with genes of both monocotyledonous and dicotyledonous plants, Plant Cell, 1994, vol. 6, pp. 907–916.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castilho, A. and Heslop–Harrison, J.S., Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata, Genome, 1995, vol. 38, pp. 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B., Sniegowski, P., and Stephan, W., The evolutionary dynamics of repetitive DNA in eukary–otes, Nature, 1994, vol. 371, pp. 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Copenhaver, G.P. and Pikaard, C.S., RFLP and physical mapping with an rDNA–specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and4, Plant J., 1996, vol. 9, pp. 259–272.

    Article  CAS  PubMed  Google Scholar 

  • Cox, A.V., Bennett, M.D., and Dyer, T.A., Specific 5S ribosomal RNA primers for plant species identification in admixtures, Theor. Appl. Genet., 1992, vol. 83, p. 684.

    CAS  PubMed  Google Scholar 

  • Cuadrado, A. and Jouve, N., Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale, J. Hered., 2002, vol. 93, pp. 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Cullis, C.A., Mechanisms and control of rapid genomic changes in flax, Ann. Bot., 2005, vol. 95, pp. 201–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daboussi, M. and Capy, P., Transposable elements in filamentous fungi, Annu. Rev. Microbiol., 2003, vol. 57, pp. 275–299.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak, J., Luo, M.C., and Yang, Z.L., Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in selffertilizing and cross–fertilizing Aegilops species, Genetics, 1998, vol. 148, pp. 423–434.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feschotte, C. and Pritham, E.J., DNA transposons and the evolution of eukaryotic genomes, Ann. Rev. Genet., 2007, vol. 41, pp. 331–368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flavell, R.B., Amplification, deletion and rearrangement: major sources of variation during species divergence, in Genome Evolution, Dover, G.A. and Flavell, R.B., Eds., London: Acad. Press, 1982.

  • Flavell, R.B., Repetitive DNA and chromosome evolution in plants, Philos. T. R. Soc. Lon. B, 1986, vol. 312, pp. 227–242.

    Article  CAS  Google Scholar 

  • Flavell, R., Mapping of ribosomal RNA transcripts in wheat, Plant Cell, 1989, vol. 1, pp. 579–589.

    Article  PubMed Central  PubMed  Google Scholar 

  • Flavell, R.B. and O’Dell, M., Ribosomal RNA genes on homologous chromosomes of groups 5 and 6 in hexaploid wheat, Heredity, 1976, vol. 37, pp. 372–385.

    Google Scholar 

  • Flavell, R.B., Bennett, M.D., Smith, J.B., and Smith, D.B., Genome size and the proportion of repeated nucleotide sequence DNA in plants, Biochem. Genet., 1974, vol. 12, pp. 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Flavell, A.J., Dunbar, E., Anderson, R., et al., Ty1–copia group retrotransposons are ubiquitous and heteroge–neous in higher plants, Nucleic Acids Res., 1992, vol. 20, pp. 3639–3644.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frey, M., Reinecke, J., Grant, S., et al., Excision of the En/Spm transposable element of Zea mays requires two element–encoded proteins, EMBO J, 1990, vol. 9, pp. 4037–4044.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerlach, W.L. and Bedbrook, J.R., Cloning and characterization of ribosomal RNA genes from wheat and barley, Nucleic Acids Res., 1979, vol. 7, pp. 1869–1885.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerlach, W.L. and Dyer, T.A., Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes, Nucleic Acids Res., 1980, vol. 8, pp. 4851–4865.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heslop–Harrison, J.S., Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes, Plant Cell, 2000, vol. 12, pp. 617–636.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu, T.T., Pattyn, P., Bakker, E.G., Cao, J., et al., The Arabidopsis lyrata genome sequence and the basis of rapid genome size change, Nat. Genet., 2011, vol. 43, pp. 476–481.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jurka, J. and Kapitonov, V.V., PIFs meet Tourists and Harbingers: a superfamily reunion, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 12315–12316.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kajikawa, M. and Okada, N., Lines mobilize SINEs in the eel through a shared 3’ sequence, Cell, 2002, vol. 111, pp. 433–444.

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov, V. and Jurka, J., Rolling–circle transposons in eukaryotes, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 8714–8719.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khemlebenb, V., Beridze, T.G., Bakhman, L., Kovarik, Ya., and Torres, R., Satellite DNAs, Usp. Biol. Khim., 2003, vol. 43, pp. 267–306.

    Google Scholar 

  • Kilian, A. and Kleinhofs, A., Cloning and mapping of telomere–associated sequences from hordeum vulgare l, Mol. Gen. Genet., 1992, vol. 235, pp. 153–156.

    Article  CAS  PubMed  Google Scholar 

  • Kishii, M. and Tsujimoto, H., Genus–specific localization of the TaiI family of tandem–repetitive sequences in either the centromeric or subtelomeric regions in Triticeae species (Poaceae) and its evolution in wheat, Genome, 2002, vol. 45, pp. 946–955.

    Article  CAS  PubMed  Google Scholar 

  • Kit, S., Equilibrium sedimentation in density gradients of DNA preparations from animal tissues, J. Mol. Biol., 1961, vol. 3, pp. 711–716.

    Article  CAS  PubMed  Google Scholar 

  • Kramerov, D. and Vassetzky, N., Short retroposons in eukaryotic genomes, Int. Rev. Cytol., 2005, vol. 247, pp. 165–221.

    Article  CAS  PubMed  Google Scholar 

  • Kubis, S.E., Schmidt, T., and Heslop–Harrison, J.S., Repetitive DNA elements as a major component of plant genomes, Ann. Bot., 1998, vol. 82, pp. 45–55.

    Article  CAS  Google Scholar 

  • Kumar, A. and Bennetzen, J., Plant retrotransposons, Ann. Rev. Genet., 1999, vol. 33, pp. 479–532.

    Article  CAS  PubMed  Google Scholar 

  • Laurie, D.A. and Bennett, M.D., Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation, Heredity, 1985, vol. 55, pp. 307–313.

    Article  Google Scholar 

  • Leitch, I.J., Beaulieu, J.M., Cheung, K., Hanson, L., et al., Punctuated genome size evolution in Liliaceae, J. Evol. Biol., 2007, vol. 20, pp. 2296–2308.

    Article  CAS  PubMed  Google Scholar 

  • Linares, C., Ferrer, E., and Fominaya, A., Discrimination of the closely related a and d genomes of the hexaploid oat Avena sativa L., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 12450–12455.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lysak, M.A., Koch, M.A., Beaulieu, J.M., Meister, A., and Leitch, I.J., The dynamic ups and downs of genome size evolution in Brassicaceae, Mol. Biol. Evol., 2009, vol. 26, pp. 85–98.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X.F. and Gustafson, J.P., Allopolyploidization–accommodated genomic sequence changes in triticale, Ann. Bot., 2008, vol. 101, pp. 825–832.

    Article  PubMed Central  PubMed  Google Scholar 

  • McIntyre, C.L., Pereira, S., Moran, L.B., and Appels, R., New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat, Genome, 1990, vol. 33, pp. 635–640.

    Article  CAS  PubMed  Google Scholar 

  • Ming, R., Hou, S., Feng, Y., et al., The draft genome of the transgenic tropical fruit tree papaya (Carica papaya L.), Nature, 2008, vol. 452, pp. 991–996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitra, R. and Bhatia, C.R., Repeated DNA sequences and polyploidy in cereal crops, in DNA Systematics, Vol. II: Plants, Dutta, S.K., Ed., Boca Raton, Florida: CRC Press, 1986, pp. 21–43.

  • Murata, M., Heslop–Harrison, J.S., and Motoyoshi, F., Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi–color fluorescence in situ hybridization with cosmid clones, Plant J., 1997, vol. 12, pp. 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Nagaki, K., Tsujimoto, H., Isono, K., and Sasakuma, T., Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae, Genome, 1995, vol. 38, pp. 479–486.

    CAS  Google Scholar 

  • Nagaki, K., Tsujimoto, H., and Sasakuma, T.H., Genome specific repetitive sequence, pEt2, of Elimus trachycaulus in part of Afa family of Triticeae, Genome, 1998, vol. 41, pp. 134–136.

    Article  CAS  PubMed  Google Scholar 

  • Navratilova, A., Koblizkova, A., and Macas, J., Survey of extrachromosomal circular DNA derived from plant satellite repeats, BMC Plant Biol., 2008, vol. 8, p. 90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ozkan, H., Tuna, M., Kilian, B., Mori, N., and Ohta, S., Genome size variation in diploid and tetraploid wild wheats, AoBPlants, 2010. doi: 10.1093/aobpla/plq015

    Google Scholar 

  • Paillard, S., Schnurbusch, T., Winzeler, M., Messmer, M., et al., An integrative genetic linkage map of winter wheat (Triticum aestivum L.), Theor. Appl. Genet., 2003, vol. 107, pp. 1235–1242.

    Article  CAS  PubMed  Google Scholar 

  • Paux, E., Roger, D., Badaeva, E., Gay, G., et al., Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC–end sequencing on chromosome 3B, Plant J., 2006, vol. 48, pp. 463–474.

    Article  CAS  PubMed  Google Scholar 

  • Pestsova, E. and Ganal, M.W., Isolation and mapping of microsatellite markers specific for the D genome of bread wheat, Genome, 2000a, vol. 43, pp. 689–697.

    Article  CAS  PubMed  Google Scholar 

  • Poulter, R. and Goodwin, T., DIRS 1and the other tyrosine recombinase retrotransposons, Cytogenet. Genome Res., 2005, vol. 110, pp. 575–588.

    Article  CAS  PubMed  Google Scholar 

  • Rayburn, A.L. and Gill, B.S., Isolation of a D–genome specific repeated DNA sequence from Aegilops squarosa, Plant. Mol. Biol., 1986, vol. 4, pp. 102–109.

    Article  CAS  Google Scholar 

  • Reeder, R.H., Enhancers and ribosomal gene spacers, Cell, 1984, vol. 38, pp. 349–351.

    Article  CAS  PubMed  Google Scholar 

  • Rubin, E., Lithwick, G., and Levy, A.A., Structure and evolution of the hat transposon superfamily, Genetics, 2001, vol. 158, pp. 949–957.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabot, F. and Schulman, A.H., Parasitism and the ret–rotransposon life cycle in plants: a hitchhiker’s guide to the genome, Heredity, 2006, vol. 97, pp. 381–388.

    Article  CAS  PubMed  Google Scholar 

  • Salina, E.A., Pestsova, E.G., Adonina, I.G., and Vershinin, A.V., Identification of a new family of tandem repeats in Triticeae genomes, Euphytica, 1998, vol. 100, pp. 231–237.

    Article  CAS  Google Scholar 

  • Salina, E.A., Adonina, I.G., Vatolina, T.Yu., and Kurata, N.A., Comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoides Tausch. and related species, Genetics, 2004, vol. 122, pp. 227–237.

    CAS  Google Scholar 

  • Salina, E.A., Lim, Y.K., Badaeva, E.D., et al., Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat poliploids, Genome, 2006, vol. 49, pp. 1023–1035.

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel, P., Tikhonov, A. Jin, Y.K., et al., Nested retrotransposons in the intergenic regions of the maize genome, Science, 1996, vol. 274, pp. 765–768.

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y., and Bennetzen, J.L., The paleontology of intergene ret–rotransposons in maize, Nat. Genet., 1998, vol. 20, pp. 43–45.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, T. and Heslop–Harrison, J.S., Genomes, genes and junk: the large–scale organization of plant chromosomes, Trends Plant Sci., 1998, vol. 3, pp. 195–199.

    Article  Google Scholar 

  • Schranz, M.E., Mohammadin, S., and Edger, P.P., Ancient whole genome duplications, novelty and diversifica–tion: the WGD Radiation Lag–Time Model, Curr. Opin. Plant Biol., 2012, vol. 15, pp. 147–153.

    Article  PubMed  Google Scholar 

  • Sergeeva, E.M. and Salina, E.A., Transposable elements and evolution of plant genome, Vavilov. Zh. Genet. Selekts., 2011, vol. 15, no. 2, pp. 382–397.

    Google Scholar 

  • Sharma, S. and Raina, S.N., Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes, Cytogenet. Genome Res., 2005, vol. 109, pp. 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Somers, D.J., Isaac, P., Edwards, K., et al., A high–density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2004, vol. 109, pp. 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  • Suoniemi, A., Tanskanen, J., and Schulman, A.H., Gypsylike retrotransposons are widespread in the plant kingdom, Plant J., 1998, vol. 13, pp. 699–705.

    Article  CAS  PubMed  Google Scholar 

  • Sykorova, E., Lim, K.Y., Kunicka, Z., Chase, M.W., et al., Telomere variability in the monocotyledonous plant order Asparagales, Proc. Biol. Sci., 2003, vol. 270, pp. 1893–1904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vershinin, A.V., Schwarzacher, T., and Heslop–Harrison, J.S., The large–scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes, Plant Cell, 1995, vol. 7, pp. 1823–1833.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vicient, C.M., Kalendar, R., Anamthawat–Jonsson, K., and Schulman, A.H., Structure, functionality, and evolution of the BARE 1 retrotransposon of barley, Genetics, 1999, vol. 107, pp. 53–63.

    CAS  Google Scholar 

  • Vicient, C.M., Kalendar, R., and Schulman, A.H., Envelope–class retrovirus–like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants, Genome Res., 2001, vol. 11, pp. 2041–2049.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vitte, C. and Panaud, O., LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model, Cytogenet. Genome Res., 2005, vol. 110, pp. 91–107.

    Article  CAS  PubMed  Google Scholar 

  • Vitte, C. and Bennetzen, J.L., Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 17638–17643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voytas, D.F., Cummings, M.P., Konieczny, A.K., et al., Copia–like retrotransposons are ubiquitous among plant, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 7124–7128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wicker, T., Guyot, R., Yahiaoui, N., and Keller, B., CACTA transposons in Triticeae. A diverse family of high–copy repetitive elements, Plant Physiol., 2003, vol. 132, pp. 52–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wicker, T., Sabot, F., Hua–Van, A., Bennetzen, J.L., et al., A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 2007, vol. 8, pp. 973–982.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., Chen, H., Hu, X., Zhang, R., et al., Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms, Mol. Biol. Evol., 2006, vol. 23, pp. 1107–1108.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Friebe, B., and Gill, B.S., Variation in the distribution of a genome–specific DNA sequences on chromosomes reveals evolutionary relations in the Triticum and Aegilops complex, Plant Syst. Evol., 2002, vol. 235, pp. 169–179.

    Article  CAS  Google Scholar 

  • Zupunski, V., Gubensek, F., and Kordis, D., Evolutionary dynamics and evolutionary history in the RTE clade of non–LTR retrotransposons, Mol. Biol. Evol., 2001, vol. 18, pp. 1849–1863.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Shcherban.

Additional information

Original Russian Text © A.B. Shcherban, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/1, pp. 618–629.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherban, A.B. Repetitive DNA sequences in plant genomes. Russ J Genet Appl Res 5, 159–167 (2015). https://doi.org/10.1134/S2079059715030168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715030168

Keywords

Navigation