The key role of PIN proteins in auxin transport in Arabidopsis thaliana Roots

Abstract

Plant hormone auxin is the key factor in plant morphogenesis. Being unevenly distributed in plant tissues, it forms gradients and concentration maxima, according to which cells grow, divide, and differentiate. The family of PIN-FORMED (PIN) proteins representing transmembrane auxin transporters plays the key role in the formation of auxin gradients. The plant root represents the most appropriate model for studying of morphogenesis regulation due to its relatively simple cellular organization. This review describes the expression patterns of PIN transporters and their contribution to auxin distribution in the Arabidopsis root. Mathematical models, which proved the relationship between the expression pattern of PIN proteins and auxin distribution in the root meristem are discussed.

This is a preview of subscription content, access via your institution.

References

  1. Band, L.R., Wells, D.M., Fozard, J., et al., Systems analysis of auxin transport in the Arabidopsis root apex, Plant Cell, 2014, Vol. 26, No. 3, pp. 862–875.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Benfey, P.N. and Schiefelbein, J.W., Getting to the root of plant development: the genetics of Arabidopsis root formation, Trends Genet., 1994, Vol. 10, No. 3, pp. 84–88.

    CAS  PubMed  Article  Google Scholar 

  3. Bennett, M.J., Marchant, A., Green, H.G., et al., Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism, Science, 1996, Vol. 273, pp. 948–950.

    CAS  PubMed  Article  Google Scholar 

  4. Blakeslee, J.J., Ann, W., Angus, P., et al., MDR/PGP auxin transport proteins and endocytic cycling, Curr. Opin. Plant Biol., 2005, Vol. 8, No. 5, pp. 494–500.

    CAS  PubMed  Article  Google Scholar 

  5. Blilou, I., Xu, J., Wildwater, M., Willemsen, V., et al., The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots, Nature, 2005, Vol. 433, pp. 39–44.

    CAS  PubMed  Article  Google Scholar 

  6. Brunoud, G., Wells, D.M., Oliva, M., et al., A novel sensor to map auxin response and distribution at high spatiotemporal resolution, Nature, 2012, Vol. 482, pp. 103–106.

    CAS  PubMed  Article  Google Scholar 

  7. Dhonukshe, P., Huang, F., Galvan-Ampudia, C.S., et al., Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling, Development, 2010, Vol. 137, No. 19, pp. 3245–3255.

    CAS  PubMed  Article  Google Scholar 

  8. Dolan, L., Janmaat, K., Willemsen, V., et al., Cellular organisation of the Arabidopsis thaliana root, Development, 1993, Vol. 119, No. 1, pp. 71–84.

    CAS  PubMed  Google Scholar 

  9. Friml, J., Benkova, E., Blilou, I., et al., AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis, Cell, 2002a, Vol. 108, No. 5, pp. 661–673.

    CAS  PubMed  Article  Google Scholar 

  10. Friml, J., Wisniewska, J., Benkova, E., et al., Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis, Nature, 2002b, Vol. 415, pp. 806–809.

    PubMed  Article  Google Scholar 

  11. Friml, J., Vieten, A., Sauer, M., et al., Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis, Nature, 2003, Vol. 426, pp. 147–153.

    CAS  PubMed  Article  Google Scholar 

  12. Geisler, M. and Murphy, A.S., The ABC of auxin transport: the role of p-glycoproteins in plant development, FEBS Lett., 2006, Vol. 580, No. 4, pp. 1094–1102.

    CAS  PubMed  Article  Google Scholar 

  13. Geldner, N., Friml, J., Stierhof, Y.D., et al., Auxin transport inhibitors block PIN1 cycling and vesicle trafficking, Nature, 2001, Vol. 413, pp. 425–428.

    CAS  PubMed  Article  Google Scholar 

  14. Grieneisen, V.A., Xu, J., Maree, A.F.M., et al., Auxin transport is sufficient to generate a maximum and gradient guiding root growth, Nature, 2007, Vol. 449, pp. 1008–1013.

    CAS  PubMed  Article  Google Scholar 

  15. Habets, M.E. and Offringa, R., PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals, New Phytol., 2014, Vol. 203, No. 2, pp. 362–377.

    CAS  PubMed  Article  Google Scholar 

  16. Jürgens, G., Apical-basal pattern formation in Arabidopsis embryogenesis, EMBO J., 2001, Vol. 20, No. 14, pp. 3609–3616.

    PubMed Central  PubMed  Article  Google Scholar 

  17. Kleine-Vehn, J., Wabnik, K., Martiniere, A., et al., Recycling, clustering, and endocytosis jointly maintain pin auxin carrier polarity at the plasma membrane, Mol. Systems Biol., 2011, vol. 7, p. 540.

    Article  Google Scholar 

  18. Krecek, P., Skupa, P., Libus, J., et al., Protein family review the pin-formed (PIN) protein family of auxin transporters, Genome Biol., 2009, vol. 10, no. 12, p. 249.

    PubMed Central  PubMed  Article  Google Scholar 

  19. Likhoshvai, V.A., Omelyanchuk, N.A., Mironova, V.V., et al., Mathematical model of auxin distribution in the plant root, Russ. J. Dev. Biol., 2007, Vol. 38, No. 6, pp. 374–382.

    CAS  Article  Google Scholar 

  20. Ljung, K., Bhalerao, R.P., and Sandberg, G., Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth, Plant J., 2002, Vol. 28, No. 4, pp. 465–474.

    Article  Google Scholar 

  21. Medvedev, S.S., Mechanisms and physiological role of polarity in plants, Russ. J. Plant Physiol., 2012, Vol. 59, No. 4, pp. 502–514.

    CAS  Article  Google Scholar 

  22. Mironova, V.V., Omelyanchuk, N.A., Yosiphon, G., et al., A plausible mechanism for auxin patterning along the developing root, BMC Syst. Biol., 2010, vol. 4, no. 1, p. 98.

    PubMed Central  PubMed  Article  Google Scholar 

  23. Mironova, V.V., Omelyanchuk, N.A., et al., Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance, Ann. Bot., 2012, Vol. 110, No. 2, pp. 349–360.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Mravec, J., Skupa, P., Bailly, A., et al., Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter, Nature, 2009, Vol. 459, pp. 1136–1140.

    CAS  PubMed  Article  Google Scholar 

  25. Petrasek, J., Mravec, J., Bouchard, R., et al., Pin proteins perform a rate-limiting function in cellular auxin efflux, Science, 2006, Vol. 312, pp. 914–918.

    CAS  PubMed  Article  Google Scholar 

  26. Sabatini, S., Beis, D., Wolkenfelt, H., et al., An auxindependent distal organizer of pattern and polarity in the Arabidopsis root, Cell, 1999, Vol. 99, No. 5, pp. 463–472.

    CAS  PubMed  Article  Google Scholar 

  27. De Smet, I., Tetsumura, T., De Rybel, B., et al., Auxindependent regulation of lateral root positioning in the basal meristem of Arabidopsis, Development, 2007, Vol. 134, No. 4, pp. 681–690.

    PubMed  Article  Google Scholar 

  28. Steinmann, T., Geldner, N., Grebe, M., et al., Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF, Science, 1999, Vol. 286, pp. 316–318.

    CAS  PubMed  Article  Google Scholar 

  29. Tanaka, H., Dhonukshe, P., Brewer, P.B., and Friml, J., Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development, Cell. Mol. Life Sci.: CMLS, 2006, Vol. 63, No. 23, pp. 2738–2754.

    CAS  PubMed  Article  Google Scholar 

  30. Tejos, R., Sauer, M., Vanneste, S., et al., Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis, Plant Cell, 2014, Vol. 26, No. 5, pp. 2114–2128.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Ugartechea-Chirino, Y., Swarup, R., Swarup, K., et al., The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana, Ann. Bot., 2010, Vol. 105, No. 2, pp. 277–289.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J., Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements, Plant Cell Online, 1997, Vol. 9, No. 11, pp. 1963–1971.

    CAS  Article  Google Scholar 

  33. Vanneste, S. and Friml, J., Auxin: a trigger for change in plant development, Cell, 2009, Vol. 136, No. 6, pp. 1005–1016.

    CAS  PubMed  Article  Google Scholar 

  34. Vieten, A., Vanneste, S., Wisniewska, J., et al., Functional redundancy of PIN proteins is accompanied by auxindependent cross-regulation of pin expression, Development, 2005, Vol. 132, No. 20, pp. 4521–4531.

    CAS  PubMed  Article  Google Scholar 

  35. Vieten, A., Sauer, M., Brewer, P.B., and Friml, J., Molecular and cellular aspects of auxin-transport-mediated development, Trends Plant Sci., 2007, Vol. 12, No. 4, pp. 160–168.

    CAS  PubMed  Article  Google Scholar 

  36. Wisniewska, J., Xu, J., Seifertova, D., et al., Polar pin localization directs auxin flow in plants, Science, 2006, vol. 312, p. 883.

    CAS  PubMed  Article  Google Scholar 

  37. Zazimalová, E., Murphy, A.S., Yang, H., Hoyerová, K., and Hosek, P., Auxin transporters—why so many?, Cold Spring Harbor Persp. Biol., 2010, vol. 2, no. 3, p. a001552.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Kovrizshnykh.

Additional information

Original Russian Text © V.V. Kovrizshnykh, N.A. Omelyanchuk, T.P. Pasternak, V.V. Mironova, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/1, pp. 797–806.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovrizshnykh, V.V., Omelyanchuk, N.A., Pasternak, T.P. et al. The key role of PIN proteins in auxin transport in Arabidopsis thaliana Roots. Russ J Genet Appl Res 5, 279–285 (2015). https://doi.org/10.1134/S2079059715030089

Download citation

Keywords

  • auxin
  • active transport
  • Arabidopsis thaliana
  • mathematical modeling
  • meristem
  • root