Skip to main content
Log in

Demographic Indicators of Probability Models

  • OPINION ARTICLES
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Describing mortality dynamics using average indicators without considering variability can yield average results, impeding the analysis of survival-curve patterns during periods of significant mortality spikes, especially at the oldest or youngest ages. Therefore, instead of the generally accepted Gompertz method, other methods are increasingly used, which rely on comparisons of various demographic indicators. In humans, chronic phenoptosis, in contrast to age-independent acute phenoptosis, manifests as a rectangularization of the survival curve with a simultaneous increase in the life expectancy at birth due to the advancement of social, scientific, and technological progress. Rectangularization is difficult to notice solely by examining the optimal coefficients in the Gompertz—Makeham equation, primarily because of the inevitable calculation errors. This can be avoided by calculating demographic indicators based on the spread of the life expectancy: Keyfitz entropy, Gini coefficient, and coefficient of variation of lifespan. We examine several sub-Gompertzian models of mortality growth with age, which describe the aging of nematodes and insects. Within the sub-Gompertzian model of aging, the increase in mortality with age in invertebrates is quantified as a rectangularization of the survival function estimated by these demographic indicators. On the other hand, the increasing rectangularization of the survival function with the development of scientific and technological progress, demonstrated by a decrease in the Keyfitz entropy, along with a simultaneous increase in the life expectancy in humans, also aligns well with the hypothesis of an age-dependent increase in mortality in mammals overall. Calculations on aging models demonstrate the effectiveness of using Keyfitz entropy and the Gini coefficient as important demographic indicators. The use of these indicators seems preferable, especially for nematodes, where the sub-Gompertzian model of aging is applicable, and for vertebrates, primarily mammals, with certain restrictions, the Gompertz–Makeham law is applicable. Approaches that consider dynamic age-related shifts in improved survival, such as studying imbalances in lifespan, enhance our understanding of the mechanisms of aging. This, in turn, will contribute to the development of more accurate methods for assessing the effects of biologically active substances used in gerontology, such as anti-aging drugs and geroprotectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Gompertz, B., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. Trans. R. Soc. L. A, 1825, vol. 115, no. 1, pp. 513–585. https://doi.org/10.1098/rstl.1825.0026

    Article  Google Scholar 

  2. Deevey, E.S., Life tables for natural populations of animals, Q. Rev. Biol., 1947, vol. 22, no. 4, pp. 283–314. https://doi.org/10.1086/395888

    Article  PubMed  Google Scholar 

  3. Gavrilov, L.A. and Gavrilova, N.S., The Biology of Life Span: A Quantitative Approach, N. Y.: Harwood Academic Publisher, 1991.

    Google Scholar 

  4. Vaupel, J.W., Carey, J.R., Christensen, K., Johnson, T.E., Yashin, A.I., Holm, N.V., Iachine, I.A., Kannisto, V., Khazaeli, A.A., Liedo, P., Longo, V.D., Zeng, Y., Manton, K.G., and Curtsinger, J.W., Biodemographic trajectories of longevity, Science, 1998, vol. 280, no. 5365, pp. 855–860. https://doi.org/10.1126/science.280.5365.855

    Article  CAS  PubMed  Google Scholar 

  5. Khalyavkin, A.V., Influence of environment on the mortality pattern of potentially non-senescent organisms. General approach and comparison with real populations, Adv. Gerontol., 2001, vol. 7, pp. 46–49.

    Google Scholar 

  6. Jones, O.R., Gaillard, J.M., Tuljapurkar, S., et al., Senescence rates are determined by ranking on the fast-slow life-history continuum, Ecol. Lett., 2008, vol. 11, no. 7, pp. 664–673. https://doi.org/10.1111/j.1461-0248.2008.01187.x

    Article  PubMed  Google Scholar 

  7. Jones, O.R., Scheuerlein, A., Salguero-Gómez, R., Camarda, C.G., Schaible, R., Casper, B.B., Dahlgren, J.P., Ehrlén, J., García, M.B., Menges, E., Quintana-Ascencio, P.F., Caswell, H., Baudisch, A., and Vaupel, J.W., Diversity of ageing across the tree of life, Nature, 2014, vol. 505, no. 7482, pp. 169–173. https://doi.org/10.1038/nature12789

    Article  CAS  PubMed  Google Scholar 

  8. Ricklefs, R.E., Life-history connections to rates of aging in terrestrial vertebrates, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 22, pp. 10 314–10 319. https://doi.org/10.1073/pnas.1005862107

    Article  Google Scholar 

  9. Myl’nikov, S.V., Towards the estimation of survival curves parameters and geroprotectors classification, Adv. Gerontol., 2011, vol. 24, no. 4, pp. 563–569.

    PubMed  Google Scholar 

  10. Akif’ev, A.P. and Potapenko, A.I., Nuclear genetic material as an initial substrate for animal aging, Genetika, 2001, vol. 37, no. 11, pp. 1445–1458.

    PubMed  Google Scholar 

  11. Markov, A.V., Can kin selection facilitate the evolution of the genetic program of senescence?, Biochemistry (Moscow), 2012, vol. 77, no. 7, pp. 733–741. https://doi.org/10.1134/S0006297912070061

    Article  CAS  PubMed  Google Scholar 

  12. Strehler, B.L. and Mildvan, A.S., General theory of mortality and aging, Science, 1960, vol. 132, no. 3418, pp. 14–21. https://doi.org/10.1126/science.132.3418.14

    Article  CAS  PubMed  Google Scholar 

  13. Seliverstov, A.V., Heuristic algorithms for recognition of some cubic hypersurfaces, Program. Comput. Softw., 2021, vol. 47, no. 1, pp. 50–55. https://doi.org/10.1134/S0361768821010096

    Article  Google Scholar 

  14. Makeham, W.M., On the law of mortality and the construction of annuity tables, The Assurance Magazine, and Journal of the Institute of Actuaries, 1860, vol. 8, no. 6, pp. 301–310. https://doi.org/10.1017/S204616580000126X

    Article  Google Scholar 

  15. Gavrilov, L.A. and Gavrilova, N.S., Mortality measurement at advanced ages: A study of the social security administration death master file, N. Am. Actuar. J., 2011, vol. 15, no. 3, pp. 432–447. https://doi.org/10.1080/10920277.2011.10597629

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gavrilova, N.S. and Gavrilov, L.A., Are we approaching a biological limit to human longevity?, J. Gerontol. Series A, 2020, vol. 75, no. 1, pp. 1061–1067. https://doi.org/10.1093/gerona/glz164

    Article  Google Scholar 

  17. Oeppen, J. and Vaupel, J.W., Demography. Broken limits to life expectancy, Science, 2002, vol. 296, no. 1, pp. 1029–1031. https://doi.org/10.1126/science.1069675

    Article  CAS  PubMed  Google Scholar 

  18. Shilovsky, G.A., Putyatina, T.S., Markov, A.V., and Skulachev, V.P., Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 2015, vol. 80, no. 12, pp. 1547–1559. https://doi.org/10.1134/S0006297915120020

    Article  CAS  PubMed  Google Scholar 

  19. Golubev, A., A 2D analysis of correlations between the parameters of the Gompertz–Makeham model (or law?) of relationships between aging, mortality, and longevity, Biogerontology, 2019, vol. 20, no. 6, pp. 799–821. https://doi.org/10.1007/s10522-019-09828-z

    Article  CAS  PubMed  Google Scholar 

  20. Bohk-Ewald, C., Ebeling, M., and Rau, R., Lifespan disparity as an additional indicator for evaluating mortality forecasts, Demography, 2017, vol. 54, no. 4, pp. 1559–1577. https://doi.org/10.1007/s13524-017-0584-0

    Article  PubMed  Google Scholar 

  21. Frolkis, V.V., Aging and Life-Prolonging Processes, Wien, New York: Springer Verlag, 1982. https://doi.org/10.1007/978-3-7091-8649-7

    Book  Google Scholar 

  22. Wrycza, T.F., Missov, T.I., and Baudisch, A., Quantifying the shape of aging, PLoS One, 2015, vol. 10, no. 3, p. e0119163. https://doi.org/10.1371/journal.pone.0119163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burger, O., Baudisch, A., and Vaupel, J.W., Human mortality improvement in evolutionary context, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 44, pp. 18210–18214. https://doi.org/10.1073/pnas.1215627109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burger O., Evolutionary demography of the human mortality profile, in The Evolution of Senescence in the Tree of Life, Shefferson, R.P., Jones, O.R., and Salgnero-Gomez, R., Eds., Cambridge: Cambridge Univ. Press, 2017. https://doi.org/10.1017/9781139939867.006

    Book  Google Scholar 

  25. Skulachev, M.V. and Skulachev, V.P., New data on programmed aging—slow phenoptosis, Biochemistry (Moscow), 2014, vol. 79, no. 1, pp. 977–993. https://doi.org/10.1134/S0006297914100010

    Article  CAS  PubMed  Google Scholar 

  26. Galimov, E.R., Lohr, J.N., and Gems, D., When and how can death be an adaptation?, Biochemistry (Moscow), 2019, vol. 84, no. 12, pp. 1433–1437. https://doi.org/10.1134/S0006297919120010

    Article  CAS  PubMed  Google Scholar 

  27. Skulachev, V.P., Shilovsky, G.A., Putyatina, T.S., Popov, N.A., Markov, A.V., Skulachev, M.V., and Sadovnichii, V.A., Perspectives of Homo sapiens lifespan extension: Focus on external or internal resources?, Aging (Albany, New York), 2020, vol. 12, no. 6, pp. 5566–5584. https://doi.org/10.18632/aging.102981

    Article  Google Scholar 

  28. Keyfitz, N., What difference would it make if cancer were eradicated? An examination of the Taeuber paradox, Demography, 1977, vol. 14, no. 4, pp. 411–418.

    Article  CAS  PubMed  Google Scholar 

  29. Aburto, J.M., Alvarez, J.-A., Villavicencio, F., and Vaupel, J.W., The threshold age of lifetable entropy, Demogr. Res., 2019, vol. 41, no. 4, pp. 83–102. https://doi.org/10.4054/DemRes.2019.41.4

    Article  Google Scholar 

  30. Demetrius, L., Adaptive value, entropy and survivorship curves, Nature, 1978, vol. 275, no. 2677, pp. 213–214. https://doi.org/10.1038/275213a0

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Z. and Vaupel, J.W., The age separating early deaths from late deaths, Demogr. Res., 2009, vol. 20, no. 29, pp. 721–730. https://doi.org/10.4054/DemRes.2009.20.29

    Article  Google Scholar 

  32. Boldrini, M., Corrado Gini, J. R. Stat. Soc. Ser. A Stat. Soc., 1966, vol. 129, no. 1, pp. 148–150. https://doi.org/10.1111/j.2397-2327.1966.tb02144.x

    Article  Google Scholar 

  33. Shkolnikov, V.M., Andreev, E.M., and Begun, A.Z., Gini coefficient as a life table function: Computation from discrete data, decomposition of differences and empirical examples, Demogr. Res., 2003, vol. 8, no. 11, pp. 305–358. https://doi.org/10.4054/DemRes.2003.8.11

    Article  Google Scholar 

  34. Smits, J. and Monden, C., Length of life inequality around the globe, Soc. Sci. Med., 2009, vol. 68, no. 6, рр. 1114–1123.

  35. Gavrilova, N.S., Gavrilov, L.A., Severin, F.F., and Skulachev, V.P., Testing predictions of the programmed and stochastic theories of aging: Comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 2012, vol. 77, no. 7, pp. 754–760. https://doi.org/10.1134/S0006297912070085

    Article  CAS  PubMed  Google Scholar 

  36. Shilovsky, G.A., Putyatina, T.S., Lysenkov, S.N., Ashapkin, V.V., Luchkina, O.S., Markov, A.V., and Skulachev, V.P., Is it possible to prove the existence of an aging program by quantitative analysis of mortality dynamics?, Biochemistry (Moscow), 2016, vol. 81, no. 12, pp. 1461–1476. https://doi.org/10.1134/S0006297916120075

    Article  CAS  PubMed  Google Scholar 

  37. Shilovsky, G.A., Putyatina, T.S., Ashapkin, V.V., Luchkina, O.S., and Markov, A.V., Coefficient of variation of lifespan across the tree of life: Is it a signature of programmed aging?, Biochemistry (Moscow), 2017, vol. 82, no. 1, pp. 1480–1492. https://doi.org/10.1134/S0006297917120070

    Article  CAS  PubMed  Google Scholar 

  38. Rubanov, L.I. and Seliverstov, A.V., Projective-invariant description of a meandering river, J. Commun. Technol. Electron., 2017, vol. 62, no. 6, pp. 663–668. https://doi.org/10.1134/S1064226917060201

    Article  Google Scholar 

  39. Chen, J., Senturk, D., Wang, J.L., Müller, H.G., Carey, J.R., Caswell, H., and Caswell-Chen, E.P., A demographic analysis of the fitness cost of extended longevity in Caenorhabditis elegans, J. Gerontol. A Biol. Sci. Med. Sci., 2007, vol. 62, no. 2, pp. 126–135. https://doi.org/10.1093/gerona/62.2.126

    Article  PubMed  Google Scholar 

  40. Evans, F.C. and Smith, F.E., The intrinsic rate of natural increase for the human louse, Pediculus humanus L., Amer. Naturalist, 1952, vol. 86, no. 830, pp. 299–310. https://doi.org/10.1086/281737

    Article  Google Scholar 

  41. Comfort, A., The Biology of Senescence, New York: Elsevier, 1979.

    Google Scholar 

  42. Lewis, K.N., Mele, J., Hayes, J.D., and Buffenstein, R., Nrf2, a guardian of health span and gatekeeper of species longevity, Integr. Comp. Biol., 2010, vol. 50, no. 5, pp. 829–843. https://doi.org/10.1093/icb/icq034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewis, K.N., Wason, E., Edrey, Y.H., Kristan, D.M., Nevo, E., and Buffenstein, R., Regulation of Nrf2 signaling and longevity in naturally long-lived rodents, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 12, pp. 3722–3727. https://doi.org/10.1073/pnas.1417566112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruby, J.G., Smith, M., and Buffenstein, R., Naked mole-rat mortality rates defy gompertzian laws by not increasing with age, Elife, 2018, vol. 7, p. e31157. https://doi.org/10.7554/eLife.31157

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shilovsky, G.A., Lability of the Nrf2/Keap/ARE cell defense system in different models of cell aging and age-related pathologies, Biochemistry (Moscow), 2022, vol. 87, no. 1, pp. 70–85. https://doi.org/10.1134/S0006297922010060

    Article  CAS  PubMed  Google Scholar 

  46. Zinovkin, R.A., Kondratenko, N.D., and Zinovkina, L.A., Does Nrf2 play a role of a master regulator of mammalian aging?, Biochemistry (Moscow), 2022, vol. 87, no. 12, pp.1465–1476. https://doi.org/10.1134/S0006297922120045

    Article  CAS  PubMed  Google Scholar 

  47. Ulasov, A.V., Rosenkranz, A.A., Georgiev, G.P., and Sobolev, A.S., Keap1/ARE signaling: Towards specific regulation, Life Sci., 2021, vol. 291, p. 120111. https://doi.org/10.1016/j.lfs.2021.120111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hushpulian, D.M., Ammal Kaidery, N., Ahuja, M., Poloznikov, A.A., Sharma, S.M., et al., Challenges and limitations of targeting the Keap1-Nrf2 pathway for neurotherapeutics: Bach1 derepression to the rescue, Front. Aging Neurosci., 2021, vol. 13, p. 673205.https://doi.org/10.3389/fnagi.2021.673205

  49. Dilman, V.M., Ontogenetic model of ageing and disease formation and mechanisms of natural selection, J. Theor. Biol., 1986, vol. 118, no. 1, pp. 73–81. https://doi.org/10.1016/S0022-5193(86)80009-1

    Article  CAS  PubMed  Google Scholar 

  50. Skulachev, V.P., Holtze, S., Vyssokikh, M.Y., Bakeeva, L.E., Skulachev, M.V., Markov, A.V., Hildebrandt, T.B., and Sadovnichii, V.A., Neoteny, prolongation of youth: From naked mole rats to “naked apes” (humans), Physiol. Rev., 2017, vol. 97, no. 1, pp. 699–720. https://doi.org/10.1152/physrev.00040.2015

    Article  PubMed  Google Scholar 

  51. Vyssokikh, M.Y., Holtze, S., Averina, O.A., Lyamzaev, K.G., Panteleeva, A.A., Marey, M.V., Zinovkin, R.A., Severin, F.F., Skulachev, M.V., Fasel, N., Hildebrandt, T.B., and Skulachev, V.P., Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program, Proc. Natl. Acad. Sci. U.S.A., 2020, vol. 117, no. 1, pp. 6491–6501. https://doi.org/10.1073/pnas.1916414117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Colchero, F., Rau, R., Jones, O.R., et al., The emergence of longevous populations, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 48, pp. 7681–7690. https://doi.org/10.1073/pnas.1612191113

    Article  CAS  Google Scholar 

  53. Skulachev, V.P., Aging is a specific biological function rather than the result of a disorder in complex living systems: Biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 1997, vol. 62, no. 11, pp. 1191–1195.

    CAS  PubMed  Google Scholar 

  54. Németh, L., Life expectancy versus lifespan inequality: A smudge or a clear relationship?, PLoS One, 2017, vol. 12, no. 1, p. e0185702. https://doi.org/10.1371/journal.pone.0185702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shilovsky, G.A., Seliverstov, A.V., and Zverkov, O.A., Demographic indicators, models, and testing, Discrete Contin. Models Appl. Comput. Sci., 2023, vol. 31, no. 4, pp. 359–374. https://doi.org/10.22363/2658-4670-2023-31-4-359-374

    Article  Google Scholar 

  56. Skulachev, M.V., Severin, F.F., and Skulachev, V.P., Aging as an evolvability-increasing program which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 2015, vol. 8, no. 1, p. 95109. https://doi.org/10.2174/1874609808666150422122401

    Article  Google Scholar 

  57. Neumann, J.T., Thao, L.T.P., Murray, A.M., Callander, E., Carr, P.R., Nelson, M.R., Wolfe, R., Woods, R.L., Reid, C.M., Shah, R.C., Newman, A.B., Williamson, J.D., Tonkin, A.M., and McNeil, J.J., ASPREE investigators. Prediction of disability-free survival in healthy older people, Geroscience, 2022, vol. 44, no. 3, pp. 1641–1655. https://doi.org/10.1007/s11357-022-00547-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Shilovsky.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilovsky, G.A., Seliverstov, A.V. Demographic Indicators of Probability Models. Adv Gerontol 13, 164–177 (2023). https://doi.org/10.1134/S2079057024600307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057024600307

Keywords:

Navigation