Skip to main content
Log in

Basic Epigenetic Mechanisms of Aging

  • REVIEWS
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The process of aging is a complex biological phenomenon that is influenced by multiple factors, including genetics, environment, and lifestyle. Recent studies have shown that epigenetic modifications play an important role in the aging process, as they regulate gene expression and ultimately affect cellular function. Epigenetic modifications include DNA methylation, histone modification, and non-coding RNA expression, among others. The authors of the review discuss the role of DNA methylation in regulating gene expression and its relationship to age-related diseases such as cancer and neurodegeneration. Also, the role of histone modification and its impact on chromatin structure and gene expression is reviewed in the article. Additionally, review provides information on the involvement of molecular hallmarks of aging in age-related diseases. Understanding the role of epigenetic mechanisms in aging is crucial for developing new interventions that could potentially slow down or even reverse the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. World Health Organization, World Report on Aging and Health, 2015. https://apps.who.int/iris/bitstream/handle/10665/186468/WHO_FWC_ALC_15. 01_rus.pdf;jsessionid=55584A04FF0D7A5B02FABB-96922C2097?sequence=3.

  2. López-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G., Hallmarks of aging: An expanding universe, Cell, 2023, vol. 186, no. 2, pp. 243–278. https://doi.org/10.1016/j.cell.2022.11.001

    Article  CAS  PubMed  Google Scholar 

  3. Flavahan, W.A., Gaskell, E., and Bernstein, B.E., Epigenetic plasticity and the hallmarks of cancer, Science, 2017, vol. 357, p. eaal2380. PMID: 28729483.

  4. Lévesque, M.L., Casey, K.F., Szyf, M., et al., Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth, Epigenetics, 2014, vol. 9, no. 10, pp. 1410–1421. PMID: 25437055.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martin, G.M., Epigenetic drift in aging identical twins, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 30, pp. 10413–10414. PMID: 16027353.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fraga, M.F. and Esteller, M., Epigenetics and aging: The targets and the marks, Trends Genet., 2007, vol. 23, no. 8, pp. 413–418. https://doi.org/10.1016/j.tig.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  7. Holliday, R. and Pugh, J.E., DNA modification mechanisms and gene activity during development, Science, 1975, vol. 187, pp. 226–232. PMID: 1111098.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Bamman, M.M., Brooks, J.D., Myers, R.M., and Absher, D., Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape, Genome Biol., 2013, vol. 14, no. 9, p. R102. https://doi.org/10.1186/gb-2013-14-9-r102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, E., Beard, C., and Jaenisch, R., Role for DNA methylation in genomic imprinting, Nature, 1993, vol. 366, pp. 362–365. PMID: 8247133. https://doi.org/10.1038/366362a0

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ehrlich, M., Gama-Sosa, M.A., Huang, L.-H., Midgett, R.M., Kuo, K.C., McCune, R.A., et al., Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells, Nucleic Acids Res., 1982, vol. 10, pp. 2709–2721. https://doi.org/10.1093/nar/10.8.2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vanyushin, B.F., Korotaev, G.K., Mazin, A.L., and Berdishev, G.D., Investigation of some characteristics of the primary and secondary structure of DNA from the liver of spawning humpback salmon, Biochemistry (Moscow), 1969, vol. 34, pp. 191–198. PMID: 5801319.

    CAS  Google Scholar 

  12. Wilson, V.L. and Jones, P.A., DNA methylation decreases in aging but not in immortal cells, Science, 1983, vol. 220, pp. 1055–1057. https://doi.org/10.1126/science.6844925

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Heyn, H., Li, N., Ferreira, H.J., Moran, S., Pisano, D.G., Gomez, A., et al., Distinct DNA methylomes of newborns and centenarians, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 10522–10527. https://doi.org/10.1073/pnas.1120658109

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Wilson, V.L. and Jones, P.A., DNA methylation decreases in aging but not in immortal cells, Science, 1983, vol. 220, pp. 1055–1057. PMID: 6844925. https://doi.org/10.1126/science.6844925

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Issa, J.-P.J., Ottaviano, Y.L., Celano, P., Hamilton, S.R., Davidson, N.E., and Baylin, S.B., Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon, Nat. Genet., 1994, vol. 7, pp. 536–540. https://doi.org/10.1038/ng0894-536

    Article  CAS  PubMed  Google Scholar 

  16. Horvath, S., DNA methylation age of human tissues and cell types, Genome Biol., 2013, vol. 14, p. R115. https://doi.org/10.1186/gb-2013-14-10-r115

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.B., Gao, Y., et al., Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol. Cell, 2013, vol. 49, pp. 359–367. https://doi.org/10.1016/j.molcel.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  18. El Khoury, L.Y., Gorrie-Stone, T., Smart, M., et al., Systematic underestimation of the epigenetic clock and age acceleration in older subjects, Genome Biol., 2019, vol. 20, p. 283. https://doi.org/10.1186/s13059-019-1810-4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lu, A.T., Quach, A., Wilson, J.G., et al., DNA methylation grimage strongly predicts lifespan and healthspan, Aging, 2019, vol. 11, no. 2, pp. 303–327. https://doi.org/10.18632/aging.101684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levine, M.E., Lu, A.T., Quach, A., et al., An epigenetic biomarker of aging for lifespan and healthspan, Aging, 2018, vol. 10, no. 4, pp. 573–591. https://doi.org/10.18632/aging.101414

    Article  PubMed  PubMed Central  Google Scholar 

  21. Holliday, R., The inheritance of epigenetic defects, Science, 1987, vol. 238, pp. 163–170. https://doi.org/10.1126/science.3310230

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Southworth, L.K., Owen, A.B., and Kim, S.K., Aging mice show a decreasing correlation of gene expression within genetic modules, PLoS Genet., 2009, vol. 5, p. e1000776. https://doi.org/10.1371/journal.pgen.1000776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gut, P. and Verdin, E., The nexus of chromatin regulation and intermediary metabolism, Nature, 2013, vol. 502, pp. 489–498. PMID: 24153302. https://doi.org/10.1038/nature12752

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Seong, K.H., Li, D., Shimizu, H., Nakamura, R., and Ishii, S., Inheritance of stress-induced, ATF-2-dependent epigenetic change, Cell, 2011, vol. 145, pp. 1049–1061. https://doi.org/10.1016/j.cell.2011.05.029

    Article  CAS  PubMed  Google Scholar 

  25. Shumaker, D.K., Dechat, T., Kohlmaier, A., Adam, S.A., Bozovsky, M.R., Erdos, M.R., Eriksson, M., Goldman, A.E., Khuon, S., Collins, F.S., et al., Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 8703–8708. https://doi.org/10.1073/pnas.0602569103

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oberdoerffer, P. and Sinclair, D.A., The role of nuclear architecture in genomic instability and ageing, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, pp. 692–702. https://doi.org/10.1038/nrm2238

    Article  CAS  PubMed  Google Scholar 

  27. Scaffidi, P. and Misteli, T., Lamin A-dependent nuclear defects in human aging, Science, 2006, vol. 312, no. 5776, pp. 1059–1063. https://doi.org/10.1126/science.1127168

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kouzarides, T., Chromatin modifications and their function, Cell, 2007, vol. 128, no. 4, pp. 693–705. https://doi.org/10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  29. Liu, L., Cheung, T.H., Charville, G.W., et al., Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging, Cell Rep., 2013, vol. 4, no. 1, pp. 189–204. https://doi.org/10.1016/j.celrep.2013.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Sullivan, R.J., Kubicek, S., Schreiber, S.L., and Karlseder, J., Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres, Nat. Struct. Mol. Biol., 2010, vol. 17, pp. 1218–1225. https://doi.org/10.1038/nsmb.189

    Article  PubMed  PubMed Central  Google Scholar 

  31. Siebold, A.P., Banerjee, R., Tie, F., Kiss, D.L., Moskowitz, J., and Harte, P.J., Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 1, pp. 169–174.https://doi.org/10.1073/pnas.0907739107

  32. Alain, L.F., Genetics, epigenetics and cancer, Canc. Ther. Oncol. Int. J., 2017, vol. 4, no. 2, p. 555634. https://doi.org/10.19080/CTOIJ.2017.04.555634

    Article  Google Scholar 

  33. Takeshima, H. and Ushijima, T., Accumulation of genetic and epigenetic alterations in normal cells and cancer risk, NPJ Precis. Oncol., 2019, vol. 3, p. 7. https://doi.org/10.1038/s41698-019-0079-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng, Y., Joyce, B.T., Liu, L., et al., Prediction of genome-wide DNA methylation in repetitive elements, Nucleic Acids Res., 2017, vol. 45, no. 15, pp. 8697–8711. https://doi.org/10.1093/nar/gkx587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Esteller, M., CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future, Oncogene, 2002, vol. 21, pp. 5427–5440. https://doi.org/10.1038/sj.onc.1205600

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, Z. and Shilatifard, A., Epigenetic modifications of histones in cancer, Genome Biol., 2019, vol. 20, p. 245. https://doi.org/10.1186/s13059-019-1870-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu, K., Wu, Z.J., Groner, A.C., He, H.H., Cai, C., Lis, R.T., et al., EZH2 oncogenic activity in castration-resistant prostate cancer is Polycomb-independent, Science, 2012, vol. 338, pp. 1465–1469. https://doi.org/10.1158/2159-8290.CD-RW2012-233

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beca, F., Kensler, K., Glass, B., et al., EZH2 protein expression in normal breast epithelium and risk of breast cancer: Results from the Nurses’ Health Studies, Breast Cancer Res., 2017, vol. 19, no. 1, p. 21. https://doi.org/10.1186/s13058-017-0817-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, H. and Zhang, R., EZH2 in epithelial ovarian cancer: From biological insights to therapeutic target, Front. Oncol., 2013, vol. 3, p. 47. https://doi.org/10.3389/fonc.2013.00047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Di Cerbo, V. and Schneider, R., Cancers with wrong HATs: The impact of acetylation, Brief. Funct. Genomics, 2013, vol. 12, no. 3, pp. 231–243. https://doi.org/10.1093/bfgp/els065

    Article  CAS  PubMed  Google Scholar 

  41. Kour, S. and Rath, P.C., Long noncoding RNAs in aging and age-related diseases, Ageing Res. Rev., 2016, vol. 26, pp. 1–21.https://doi.org/10.1016/j.arr.2015.12.001

  42. Jin, L., Song, Q., Zhang, W., Geng, B., and Cai, J., Roles of long noncoding RNAs in aging and aging complications, Biochim. Biophys. Acta Mol. Basis D, vol. 1865, no. 7, pp. 1763–1771.https://doi.org/10.1016/j.bbadis.2018.09.021

  43. North, B.J. and Sinclair, D.A., The intersection between aging and cardiovascular disease, Circ. Res., 2012, vol. 110, no. 8, pp. 1097–1108. https://doi.org/10.1161/CIRCRESAHA.111.246876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prasher, D., Greenway, S.C., and Singh, R.B., The impact of epigenetics on cardiovascular disease, Biochem. Cell Biol., 2020, vol. 98, no. 1, pp. 12–22. https://doi.org/10.1139/bcb-2019-0045

    Article  CAS  PubMed  Google Scholar 

  45. Tabaei, S. and Tabaee, S.S., DNA methylation abnormalities in atherosclerosis, Artif. Cells Nanomed. Biotechnol., 2019, vol. 47, no. 1, pp. 2031–2041. https://doi.org/10.1080/21691401.2019.1617724

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, W., Song, M., Qu, J., and Liu, G.H., Epigenetic modifications in cardiovascular aging and diseases, Circ. Res., 2018, vol. 123, no. 7, pp. 773–786. https://doi.org/10.1161/CIRCRESAHA.118.312497

    Article  CAS  PubMed  Google Scholar 

  47. Nativio, R., Donahue, G., Berson, A., et al., Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease, Nat. Neurosci., 2018, vol. 21, pp. 497–505. https://doi.org/10.1038/s41593-018-0101-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scarpa, S., Fuso, A., D’Anselmi, F., and Cavallaro, R.A., Presenilin 1 gene silencing by S-adenosylmethionine: A treatment for Alzheimer disease?, FEBS Lett., 2003, vol. 541, nos. 1–3, pp. 145–148. https://doi.org/10.1016/S0014-5793(03)00277-1

  49. Fuso, A., Nicolia, V., Cavallaro, R.A., Ricceri, L., D’Anselmi, F., Coluccia, P., Calamandrei, G., and Scarpa, S., B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, PS1 and BACE expression and amyloid-beta deposition in mice, Mol. Cell Neurosci., 2008, vol. 37, no. 4, pp. 731–746. https://doi.org/10.1016/j.mcn.2007.12.018

    Article  CAS  PubMed  Google Scholar 

  50. Giri, A.K. and Aittokallio, T., DNMT inhibitors increase methylation in the cancer genome, Front. Pharmacol., 2019, vol. 10, p. 385. https://doi.org/10.3389/fphar.2019.00385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ocampo, A., Reddy, P., Martinez-Redondo, P., et al., In vivo amelioration of age-associated hallmarks by partial reprogramming, Cell, 2016, vol. 167, no. 7, pp. 1719–1733. https://doi.org/10.1016/j.cell.2016.11.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Strazhesko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants involved in the study.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strazhesko, I.D., Yesakova, A.P., Akopyan, A.A. et al. Basic Epigenetic Mechanisms of Aging. Adv Gerontol 13, 78–83 (2023). https://doi.org/10.1134/S2079057024600241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057024600241

Keywords:

Navigation