Skip to main content
Log in

The Role of Kynurenine Pathway Metabolites in the Development of Frailty in Older Adults

  • REVIEWS
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Frailty is the main geriatric syndrome, which is closely associated with age-related diseases and aging in general. Being considered the main pathogenetic mechanism of aging, low-grade chronic inflammation potentially contributes to increased degradation of the essential amino acid tryptophan through the kynurenine pathway. Active metabolites of the kynurenine pathway, when accumulated, implement their immunomodulatory, pro-inflammatory and cytotoxic properties, thereby supporting and enhancing the aging process. Over the past decade, data have been collected on the role of an unbalanced kynurenine pathway in the pathogenesis of frailty and age-related diseases. This review summarizes clinical and experimental data on the importance of kynurenine pathway analysis as a valuable tool for risk stratification and prognosis of frailty and age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Beard, J.R., Officer, A., de Carvalho, I.A., Sadana, R., Pot, A.M., Michel, J.P., Lloyd-Sherlock, P., Epping-Jordan, J.E., Peeters, G.M.E.E.G., Mahanani, W.R., Thiyagarajan, J.A., and Chatterji, S., The World report on ageing and health: A policy framework for healthy ageing, Lancet, 2016, vol. 387, no. 10033, pp. 2145–2154. PMID: 26520231; PMCID: PMC4848186.https://doi.org/10.1016/S0140-6736(15)00516-4

    Article  PubMed  Google Scholar 

  2. Fried, L.P., Tangen, C.M., Walston, J., Newman, A.B., Hirsch, C., Gottdiener, J., Seeman, T., Tracy, R., Kop, W.J., Burke, G., and McBurnie, M.A., Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: Evidence for a phenotype, J. Gerontol. A Biol. Sci. Med. Sci., 2001, vol. 56, no. 3, pp. M146–М156. PMID: 11253156.https://doi.org/10.1093/gerona/56.3.m146

    Article  CAS  PubMed  Google Scholar 

  3. Chen, X., Mao, G., and Leng, S.X., Frailty syndrome: An overview, Clin. Interv. Aging, 2014, vol. 9, pp. 433–441. PMID: 24672230; PMCID: PMC3964027.https://doi.org/10.2147/CIA.S45300

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ottenbacher, K.J., Graham, J.E., Al Snih, S., Raji, M., Samper-Ternent, R., Ostir, G.V., and Markides, K.S., Mexican Americans and frailty: Findings from the Hispanic established populations epidemiologic studies of the elderly, Am. J. Public Health, 2009, vol. 99, no. 4, pp. 673–679. https://doi.org/10.2105/AJPH.2008.143958

    Article  PubMed  PubMed Central  Google Scholar 

  5. Suhre, K., Shin, S.Y., Petersen, A.K., et al., Human metabolic individuality in biomedical and pharmaceutical research, Nature, 2011, vol. 477, no. 7362, pp. 54–60. PMID: 21886157; PMCID: PMC3832838. https://doi.org/10.1038/nature10354

    Article  CAS  PubMed  Google Scholar 

  6. van der Greef, J., van Wietmarschen, H., van Ommen, B., and Verheij, E., Looking back into the future: 30 years of metabolomics at TNO, Mass. Spectrom. Rev., 2013, vol. 32, no. 5, pp. 399–415. PMID: 23630115.https://doi.org/10.1002/mas.21370

    Article  CAS  PubMed  Google Scholar 

  7. Stone, T.W. and Perkins, M.N., Quinolinic acid: A potent endogenous excitant at amino acid receptors in CNS, Eur. J. Pharmacol., 1981, vol. 72, no. 4, pp. 411–412. PMID: 6268428.https://doi.org/10.1016/0014-2999(81)90587-2

  8. Moroni, F., Tryptophan metabolism and brain function: Focus on kynurenine and other indole metabolites, Eur. J. Pharmacol., 1999, vol. 375, nos. 1–3, pp. 87–100. PMID: 10443567. https://doi.org/10.1016/s0014-2999(99)00196-x

    Article  CAS  PubMed  Google Scholar 

  9. Ying, W., NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences, Antioxid. Redox Signal., 2008, vol. 10, no. 2, pp. 179–206. PMID: 18020963.https://doi.org/10.1089/ars.2007.1672

    Article  CAS  PubMed  Google Scholar 

  10. Jones, S.P., Franco, N.F., Varney, B., Sundaram, G., Brown, D.A., de Bie, J., Lim, C.K., Guillemin, G.J., and Brew, B.J., Expression of the kynurenine pathway in human peripheral blood mononuclear cells: Implications for inflammatory and neurodegenerative disease, PLoS One, 2015, vol. 10, no. 6, p. e0131389. PMID: 26114426; PMCID: PMC4482723.https://doi.org/10.1371/journal.pone.0131389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Majewski, M., Kozlowska, A., Thoene, M., Lepiarczyk, E., and Grzegorzewski, W.J., Overview of the role of vitamins and minerals on the kynurenine pathway in health and disease, J. Physiol. Pharmacol., 2016, vol. 67, no. 1, pp. 3–19. PMID: 27010891.

    CAS  PubMed  Google Scholar 

  12. Hardman, D., Aging: A theory based on free radical and radiation chemistry, J. Gerontol., 1956, vol. 11, no. 3, pp. 298–300. PMID: 13332224.https://doi.org/10.1093/geronj/11.3.298

    Article  Google Scholar 

  13. Cervenka, I., Agudelo, L.Z., and Ruas, J.L., Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health, Science, 2017, vol. 357, no. 6349, p. eaaf9794. PMID: 28751584.https://doi.org/10.1126/science.aaf9794

  14. Oxenkrug, G., Insulin resistance and dysregulation of tryptophankynurenine and kynurenine–nicotinamide adenine dinucleotide metabolic pathways, Mol. Neurobiol., 2013, vol. 48, no. 2, pp. 294–301. PMID: 23813101; PMCID: PMC3779535.https://doi.org/10.1007/s12035-013-8497-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vujkovic-Cvijin, I., Dunham, R.M., Iwai, S., et al., Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism, Sci. Transl. Med., 2013, vol. 5, no. 193, p. 193ra91. Erratum in: Sci Transl Med. 2017 Nov 8;9(415): PMID: 23843452; PMCID: PMC4094294.https://doi.org/10.1126/scitranslmed.3006438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dehhaghi, M., Kazemi Shariat, P.H., and Guillemin, G.J., Microorganisms, tryptophan metabolism, and kynurenine pathway: A complex interconnected loop influencing human health status, Int. J. Tryptophan Res., 2019, vol. 12, p. 1178646919852996. https://doi.org/10.1177/1178646919852996

    Article  PubMed  PubMed Central  Google Scholar 

  17. Heyes, M.P., Chen, C.Y., Major, E.O., and Saito, K., Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types, Biochem. J., 1997, vol. 326, pp. 351–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moffett, J.R. and Namboodiri, M.A., Tryptophan and the immune response, Immunol. Cell Biol., 2003, vol. 81, no. 4, pp. 247–265. PMID: 12848846.https://doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x

    Article  CAS  PubMed  Google Scholar 

  19. Heyes, M.P., Saito, K., Milstien, S., and Schiff, S.J., Quinolinic acid in tumors, hemorrhage and bacterial infections of the central nervous system in children. J. Neurol. Sci., 1995, vol. 133, nos. 1–2, pp. 112–118. PMID: 8583213.https://doi.org/10.1016/0022-510x(95)00164-w

  20. Stone, T.W. and Addae, J.I., The pharmacological manipulation of glutamate receptors and neuroprotection, Eur. J. Pharmacol., 2002, vol. 447, pp. 285–296.

    Article  CAS  PubMed  Google Scholar 

  21. Cozzi, A., Carpenedo, R., and Moroni, F., Kynurenine hydroxylase inhibitors reduce ischemic brain damage: Studies with (m-nitrobenzoyl)-alanine (mNBA) and 3, 4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzen-esulfonamide (Ro 61–8048) in models of focal or global brain ischemia, J. Cereb. Blood Flow Metab., 1999, vol. 19, pp. 771–777.

    Article  CAS  PubMed  Google Scholar 

  22. Okuda, S., Nishiyama, N., Saito, H., and Katsuki, H., 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J. Neurochem., 1998, vol. 70, no. 1, pp. 299–307. PMID: 9422375.https://doi.org/10.1046/j.1471-4159.1998.70010299.x

    Article  CAS  PubMed  Google Scholar 

  23. Rapisarda, A., Pastorino, S., Massazza, S., Varesio, L., and Bosco, M., Antagonistic effect of picolinic acid and interferon-gamma on macrophage inflammatory protein-1a/b production, Cell Immunol., 2002, vol. 220, p. 7080.

    Article  Google Scholar 

  24. Walston, J., McBurnie, M.A., Newman, A., et al., Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: Results from the Cardiovascular Health Study, Arch. Intern. Med., 2002, vol. 162, no. 20, pp. 2333–2341.

    Article  PubMed  Google Scholar 

  25. Varadhan, R., Yao, W., Matteini, A., et al., Simple biologically informed inflammatory index of two serum cytokines predicts 10 year all-cause mortality in older adults, J. Gerontol. A Biol. Sci. Med. Sci., 2014, vol. 69, no. 2, pp. 165–173.

  26. Franceschi, C. and Campisi, J., Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases, J. Gerontol. A Biol. Sci. Med. Sci., 2014, vol. 69, suppl. 1, pp. S4–9.

    Article  PubMed  Google Scholar 

  27. Gonzalez-Freire, M., de Cabo, R., Studenski, S.A., and Ferrucci, L., The neuromuscular junction: Aging at the crossroad between nerves and muscle, Front. Aging Neurosci., 2014, vol. 6, p. 208.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Newman, A.B., Gottdiener, J.S., Mcburnie, M.A., Hirsch, C.H., Kop, W.J., Tracy, R., Walston, J.D., and Fried, L.P., Associations of subclinical cardiovascular disease with frailty, J. Gerontol. A Biol. Sci. Med. Sci., 2001, vol. 56, no. 3, pp. M158–М166. https://doi.org/10.1093/gerona/56.3.m158

    Article  CAS  PubMed  Google Scholar 

  29. Soysal, P., Stubbs, B., Lucato, P., Luchini, C., Solmi, M., Peluso, R., Sergi, G., Isik, A.T., Manzato, E., Maggi, S., Maggio, M., Prina, A.M., Cosco, T.D., Wu, Y.-T., and Veronese, N., Inflammation and frailty in the elderly: A systematic review and meta-analysis, Ageing Res. Rev., 2016, vol. 31, pp. 1–8. https://doi.org/10.1016/j.arr.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  30. Hubbard, R.E., O’Mahony, M.S., Savva, G.M., Calver, B.L., and Woodhouse, K.W., Inflammation and frailty measures in older people, J. Cell. Mol. Med., 2009, vol. 13, no. 9B, pp. 3103–3109.https://doi.org/10.1111/j.1582-4934.2009.00733.x

  31. Zhu, Y., Liu, Z., Wang, Y., Wang, Z., Shi, J., Xie, X., Jin, L., Chu, X., and Wang, X., C-reactive protein, frailty and overnight hospital admission in elderly individuals: A population-based study, Arch. Gerontol. Geriatr., 2016, vol. 64, pp. 1–5. https://doi.org/10.1016/j.archger.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  32. Westbrook, R., Chung, T., Lovett, J., et al., Kynurenines link chronic inflammation to functional decline and physical frailty. JCI Insight, 2020, vol. 5, no. 16, p. e136091. PMID: 32814718; PMCID: PMC7455140.https://doi.org/10.1172/jci.insight.136091

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dugué, P.A., Hodge, A.M., Ulvik, A., et al., Association of markers of inflammation, the kynurenine pathway and B vitamins with age and mortality, and a signature of inflammaging, J. Gerontol. A Biol. Sci. Med. Sci., 2022, vol. 77, no. 4, pp. 826–836. PMID: 34117761. https://doi.org/10.1093/gerona/glab163

  34. Walston, J., Fedarko, N., Yang, H., et al., The physical and biological characterization of a frail mouse model, J. Gerontol. A Biol. Sci. Med. Sci., 2008, vol. 63, no. 4, pp. 391–398.

    Article  PubMed  Google Scholar 

  35. Valdiglesias, V., Marcos-Pérez, D., Lorenzi, M., Onder, G., Gostner, J.M., Strasser, B., Fuchs, D., and Bonassi, S., Immunological alterations in frail older adults: A cross sectional study, Exp. Gerontol., 2018, vol. 112, pp. 119–126. PMID: 30240849.https://doi.org/10.1016/j.exger.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  36. Marcos-Pérez, D., Sánchez-Flores, M., Maseda, A., Lorenzo-López, L., Millán-Calenti, J.C., Strasser, B., Gostner, J.M., Fuchs, D., Pásaro, E., Valdiglesias, V., and Laffon, B., Frailty status in older adults is related to alterations in indoleamine 2,3-dioxygenase 1 and guanosine triphosphate cyclohydrolase I enzymatic pathways. J. Am. Med. Dir. Assoc., 2017, vol. 18, no. 12, pp. 1049–1057. PMID: 28801236.https://doi.org/10.1016/j.jamda.2017.06.021

    Article  PubMed  Google Scholar 

  37. Fried, L.P., Tangen, C.M., Walston, J., Newman, A.B., Hirsch, C., Gottdiener, J., Seeman, T., Tracy, R., Kop, W.J., Burke, G., and McBurnie, M.A., Cardiovascular health study collaborative research group, frailty in older adults: Evidence for a phenotype, J. Gerontol. A Biol. Sci. Med. Sci., 2001, vol. 56, no. 3, pp. M146–М156. PMID: 11253156.https://doi.org/10.1093/gerona/56.3.m146

    Article  CAS  PubMed  Google Scholar 

  38. Rockwood, K. and Mitnitski, A., Frailty in relation to the accumulation of deficits, J. Gerontol. A Biol. Sci. Med. Sci., 2007, vol. 62, no. 7, pp. 722–727. PMID: 17634318.https://doi.org/10.1093/gerona/62.7.722

    Article  PubMed  Google Scholar 

  39. Theou, O., Brothers, T.D., Mitnitski, A., and Rockwood, K., Operationalization of frailty using eight commonly used scales and comparison of their ability to predict all-cause mortality, J. Am. Geriatr. Soc., 2013, vol. 61, no. 9, pp. 1537–1551. PMID: 24028357.https://doi.org/10.1111/jgs.12420

    Article  PubMed  Google Scholar 

  40. Blodgett, J., Theou, O., Kirkland, S., Andreou, P., and Rockwood, K., Frailty in NHANES: Comparing the frailty index and phenotype, Arch. Gerontol. Geriatr., 2015, vol. 60, no. 3, pp. 464–470.https://doi.org/10.1016/j.archger.2015.01.016

  41. Jang, I.Y., Park, J.H., Kim, J.H., Lee, S., Lee, E., Lee, J.Y., Park, S.J., Kim, D.A., Hamrick, M.W., and Kim, B.J., The association of circulating kynurenine, a tryptophan metabolite, with frailty in older adults, Aging (Albany NY), 2020, vol. 12, no. 21, pp. 22 253–22 265. PMID: 33188590.https://doi.org/10.18632/aging.104179

    Article  Google Scholar 

  42. Westbrook, R., Chung, T., Lovett, J., et al., Kynurenines link chronic inflammation to functional decline and physical frailty, JCI Insight, 2020, vol. 5, no. 16, p. e136091. PMID: 32814718; PMCID: PMC7455140.https://doi.org/10.1172/jci.insight.136091

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dukes, A., Davis, C., El Refaey, M., Upadhyay, S., Mork, S., Arounleut, P., Johnson, M.H., Hill, W.D., Isales, C.M., and Hamrick, M.W., The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTor signaling in vivo and the expression of myogenic genes in vitro, Nutrition, 2015, vol. 31, nos. 7–8, pp. 1018–1024. https://doi.org/10.1016/j.nut.2015.02.011

  44. Mangge, H., Stelzer, I., Reininghaus, E.Z., Weghuber, D., Postolache, T.T., and Fuchs, D., Disturbed tryptophan metabolism in cardiovascular disease, Curr. Med. Chem., 2014, vol. 21, no. 17, p. 1931–1937. PMID: 24606499; PMCID: PMC4922792.https://doi.org/10.2174/0929867321666140304105526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wokke, J.H., Jennekens, F.G., van der Oord, C.J., Veldman, H., Smit, L.M., and Leppink, G.J., Morphological changes in the human end plate with age, J. Neurol. Sci., 1990, vol. 95, no. 3, p. 291–310. PMID: 2358822.https://doi.org/10.1016/0022-510x(90)90076-y

    Article  CAS  PubMed  Google Scholar 

  46. Addi, T., Dou, L., and Burtey, S., Tryptophan-derived uremic toxins and thrombosis in chronic kidney disease, Toxins (Basel), 2018, vol. 10, no. 10, p. 412. PMID: 30322010; PMCID: PMC6215213.https://doi.org/10.3390/toxins10100412

    Article  CAS  PubMed  Google Scholar 

  47. Hsu, C.N. and Tain, Y.L., Developmental programming and reprogramming of hypertension and kidney disease: Impact of tryptophan metabolism, Int. J. Mol. Sci., 2020, vol. 21, no. 22, p. 8705. PMID: 33218054; PMCID: PMC7698939.https://doi.org/10.3390/ijms21228705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rejdak, R., Junemann, A., Grieb, P., Thaler, S., Schuettauf, F., Choragiewicz, T., Zarnowski, T., Turski, W.A., and Zrenner, E., Kynurenic acid and kynurenine aminotransferases in retinal aging and neurodegeneration, Pharmacol. Rep., 2011, vol. 63, no. 6, pp. 1324–1334. PMID: 22358081.https://doi.org/10.1016/s1734-1140(11)70697-1

    Article  CAS  PubMed  Google Scholar 

  49. Al Saedi, A., Chow, S., Vogrin, S., Guillemin, G.J., and Duque, G., Association between tryptophan metabolites, physical performance, and frailty in older persons, Int. J. Tryptophan Res., 2022, vol. 15, p. 11786469211069951. PMID: 35125874; PMCID: PMC8808031.https://doi.org/10.1177/11786469211069951

    Article  PubMed  PubMed Central  Google Scholar 

  50. Anaya, J.M., Bollag, W.B., Hamrick, M.W., and Isales, C.M., The role of tryptophan metabolites in musculoskeletal stem cell aging, Int. J. Mol. Sci., 2020, vol. 21, no. 18, p. 6670. https://doi.org/10.3390/ijms21186670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Darlington, L.G., Forrest, C.M., Mackay, G.M., Smith, R.A., Smith, A.J., Stoy, N., and Stone, T.W., On the biological importance of the 3-hydroxyanthranilic acid: Anthranilic acid ratio, Int. J. Tryptophan Res., 2010, vol. 3, pp. 51–59. https://doi.org/10.4137/ijtr.s4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Isales, C., Ding, K., Bollag, W., McGee-Lawrence, M., Hill, W., Shi, X., Elsalanty, M., and Hamrick, M., Kynurenic acid a tryptophan metabolite induces bone loss in mice, Innov. Aging, 2018, vol. 2, pp. 100–101. https://doi.org/10.1093/geroni/igy023.377

    Article  PubMed Central  Google Scholar 

  53. Okuda, S., Nishiyama, N., Saito, H., and Katsuki, H., Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 22,pp. 12 553–12 558. https://doi.org/10.1073/pnas.93.22.12553

    Article  Google Scholar 

  54. Aman, Y., Qiu, Y., Tao, J., and Fang, E., Therapeutic potential of boosting NAD+ in aging and age-related diseases, Transl. Med. Aging, 2018, vol. 2, pp. 30–37.

    Article  Google Scholar 

  55. Ding, K., McGee-Lawrence, M.E., Kaiser, H., et al., Picolinic acid, a tryptophan oxidation product, does not impact bone mineral density but increases marrow adiposity, Exp. Gerontol., 2020, vol. 133, p. 110885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Forrest, C.M., Mackay, G.M., Oxford, L., Stoy, N., Stone, T.W., and Darlington, L.G., Kynurenine pathway metabolism in patients with osteoporosis after 2 years of drug treatment, Clin. Exp. Pharmacol. Physiol., 2006, vol. 33, pp. 1078–1087.

    Article  CAS  PubMed  Google Scholar 

  57. Apalset, E.M., Gjesdal, C.G., Ueland, P.M., Midttun, Ø., Ulvik, A., Eide, G.E., Meyer, K., and Tell, G.S., Interferon (IFN)-γ-mediated inflammation and the kynurenine pathway in relation to bone mineral density: The Hordaland Health Study, Clin. Exp. Immunol., 2014, vol. 176, pp. 452–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cason, C.A., Dolan, K.T., Sharma, G., Tao, M., Kulkarni, R., Helenowski, I.B., Doane, B.M., Avram, M.J., McDermott, M.M., Chang, E.B., Ozaki, C.K., and Ho, K.J., Plasma microbiome-modulated indole- and phenylderived metabolites associate with advanced atherosclerosis and postoperative outcomes, J. Vasc. Surg., 2018, vol. 68, no. 5, p. 1552–1562.e7. PMID: 29248242; PMCID: PMC5999545.https://doi.org/10.1016/j.jvs.2017.09.029

    Article  PubMed  Google Scholar 

  59. Wongpraparut, N., Pengchata, P., Piyophirapong, S., Panchavinnin, P., Pongakasira, R., Arechep, N., Kasetsinsombat, K., and Maneechotesuwan, K., Indoleamine 2,3 dioxygenase (IDO) level as a marker for significant coronary artery disease, BMC Cardiovasc. Disord., 2021, vol. 21, no. 1, p. 353. PMID: 34311709; PMCID: PMC8314527.https://doi.org/10.1186/s12872-021-02140-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bao, Y.S., Ji, Y., Zhao, S.L., Ma, L.L., Xie, R.J., and Na, S.P., Serum levels and activity of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA synthetase and their association with disease severity in patients with chronic kidney disease, Biomarkers, 2013, vol. 18, no. 5, p. 379–385. PMID: 23651343.https://doi.org/10.3109/1354750X.2013.790074

    Article  CAS  PubMed  Google Scholar 

  61. Rhee, E.P., Clish, C.B., Ghorbani, A., et al., A combined epidemiologic and metabolomic approach improves CKD prediction, J. Am. Soc. Nephrol., 2013, vol. 24, no. 8, p. 1330–1338. PMID: 23687356; PMCID: PMC3736702.https://doi.org/10.1681/ASN.2012101006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Silva, R.E., Baldim, J.L., Chagas-Paula, D.A., Soares, M.G., Lago, J.H.G., Goncalves, R.V., and Novaes, R.D., Predictive metabolomic signatures of endstage renal disease: A multivariate analysis of population-based data, Biochimie, 2018, vol. 152, pp. 14–30. PMID: 29913183.https://doi.org/10.1016/j.biochi.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  63. Goek, O.N., Prehn, C., Sekula, P., Römisch-Margl, W., Döring, A., Gieger, C., Heier, M., Koenig, W., Wang-Sattler, R., Illig, T., Suhre, K., Adamski, J., Köttgen, A., and Meisinger, C., Metabolites associate with kidney function decline and incident chronic kidney disease in the general population, Nephrol. Dial. Transplant., 2013, vol. 28, no. 8, pp. 2131–2138. PMID: 23739151.https://doi.org/10.1093/ndt/gft217

    Article  CAS  PubMed  Google Scholar 

  64. Lee, H., Jang, H.B., Yoo, M.G., Park, S.I., and Lee, H.J., Amino acid metabolites associated with chronic kidney disease: An eight-year follow-up Korean epidemiology study, Biomedicines, 2020, vol. 8, no. 7, p. 222. PMID: 32708997; PMCID: PMC7399801.https://doi.org/10.3390/biomedicines8070222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pertovaara, M., Raitala, A., Juonala, M., Lehtimäki, T., Huhtala, H., Oja, S.S., Jokinen, E., Viikari, J.S., Raitakari, O.T., and Hurme, M., Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: The cardiovascular risk in Young Finns Study, Clin. Exp. Immunol. 2007, vol. 148, no. 1, pp. 106–111. PMID: 17349013; PMCID: PMC1868844.https://doi.org/10.1111/j.1365-2249.2007.03325.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pedersen, E.R., Tuseth, N., Eussen, S.J., Ueland, P.M., Strand, E., Svingen, G.F., Midttun, Ø., Meyer, K., Mellgren, G., Ulvik, A., Nordrehaug, J.E., Nilsen, D.W., and Nygård, O., Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris, Arterioscler. Thromb. Vasc. Biol., 2015, vol. 35, no. 2, pp. 455–462. PMID: 25524770.https://doi.org/10.1161/ATVBAHA.114.304674

    Article  CAS  PubMed  Google Scholar 

  67. Crepaldi, G. and Allegri, G., Relationship between tryptophan metabolism and vitamin B6 and nicotinamid in aged subjects, Acta Vit. Enzymol., 1975, vol. 29, pp. 140–144.

    CAS  Google Scholar 

  68. Rogers, K.S. and Evangelista, S.J., 3-Hydroxykynurenine, 3-hydroxyanthranilic acid, and o-aminophenol inhibit leucine-stimulated insulin release from rat pancreatic islets, Proc. Soc. Exp. Biol. Med., 1985, vol. 178, no. 2, pp. 275–278. PMID: 3881773.https://doi.org/10.3181/00379727-178-42010

    Article  CAS  PubMed  Google Scholar 

  69. Price, J. and Brown, R., Quantitative studies on human urinary metabolites of tryptophan as affected by isoniazid and deoxypyridoxine, J. Clin. Invest., 1957, vol. 36, pp. 1600–1607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zuo, H., Ueland, P.M., Ulvik, A., Eussen, S.J., Vollset, S.E., Nygård, O., Midttun, Ø., Theofylaktopoulou, D., Meyer, K., and Tell, G.S., Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: The Hordaland Health Study. Am. J. Epidemiol., 2016, vol. 183, no. 4, pp. 249–258. PMID: 26823439; PMCID: PMC4753283.https://doi.org/10.1093/aje/kwv242

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu, M., Wang, X., Wang, L., Ma, X., Gong, Z., Zhang, S., and Li, Y., Targeting the IDO1 pathway in cancer: From bench to bedside, J. Hematol. Oncol., 2018, vol. 11, no. 1, p. 100. PMID: 30068361; PMCID: PMC6090955.https://doi.org/10.1186/s13045-018-0644-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Platten, M., Nollen, E.A.A., Röhrig, U.F., Fallarino, F., and Opitz, C.A., Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond, Nat. Rev. Drug Discov., 2019, vol. 18, no. 5, p. 379–401. PMID: 30760888.https://doi.org/10.1038/s41573-019-0016-5

    Article  CAS  PubMed  Google Scholar 

  73. Platten, M., von Knebel Doeberitz, N., Oezen, I., Wick, W., and Ochs, K., Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors, Front. Immunol., 2015, vol. 5, p. 673. PMID: 25628622; PMCID: PMC4290671.https://doi.org/10.3389/fimmu.2014.00673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dukes, A., Davis, C., El Refaey, M., Upadhyay, S., Mork, S., Arounleut, P., Johnson, M.H., Hill, W.D., Isales, C.M., and Hamrick, M.W., The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTor signaling in vivo and the expression of myogenic genes in vitro, Nutrition, 2015, vol. 31, pp. 1018–1024. https://doi.org/10.1016/j.nut.2015.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. El Refaey, M., Zhong, Q., Hill, W.D., Shi, X.M., Hamrick, M.W., Bailey, L., Johnson, M., Xu, J., Bollag, W.B., Chutkan, N., and Isales, C.M., Aromatic amino acid activation of signaling pathways in bone marrow mesenchymal stem cells depends on oxygen tension, PLoS One, 2014, vol. 9, p. e91108.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ding, K.H., Cain, M., Davis, M., et al., Amino acids as signaling molecules modulating bone turnover, Bone, 2018, vol. 115, pp. 15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Refaey, M.E., McGee-Lawrence, M.E., Fulzele, S., et al., Kynurenine, a tryptophan metabolite that accumulates with age, induces bone loss, J. Bone Miner. Res., 2017, vol. 32, pp. 2182–2193.

    Article  CAS  PubMed  Google Scholar 

  78. Kim, B.J., Hamrick, M.W., Yoo, H.J., Lee, S.H., Kim, S.J., Koh, J.M., and Isales, C.M., The detrimental effects of kynurenine, a tryptophan metabolite, on human bone metabolism, J. Clin. Endocrinol. Metab., 2019, vol. 104, no. 6, pp. 2334–2342. https://doi.org/10.1210/jc.2018-02481

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lovelace, M.D., Varney, B., Sundaram, G., Lennon, M.J., Lim, C.K., Jacobs, K., Guillemin, G.J., and Brew, B.J., Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases, Neuropharmacology, 2017, vol. 112, pp. 373–388.

    Article  CAS  PubMed  Google Scholar 

  80. Schwarcz, R. and Stone, T.W., The kynurenine pathway and the brain: Challenges, controversies and promises, Neuropharmacology, 2017, vol. 112, pp. 237–247.

    Article  CAS  PubMed  Google Scholar 

  81. Zadori, D., Nyiri, G., Szonyi, A., Szatmari, I., Fulop, F., Toldi, J., Freund, T.F., Vecsei, L., and Klivenyi, P., Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease, J. Neural Transm. (Vienna), 2011, vol. 118, pp. 865–875.

    Article  CAS  PubMed  Google Scholar 

  82. Amaral, M., Levy, C., Heyes, D.J., Lafite, P., Outeiro, T.F., Giorgini, F., Leys, D., and Scrutton, N.S., Structural basis of kynurenine 3-monooxygenase inhibition, Nature, 2013, vol. 496, pp. 382–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Silva-Adaya, D., Perez-De La Cruz, V., Villeda-Hernandez, J., Carrillo-Mora, P., Gonzalez-Herrera, I.G., Garcia, E., Colin-Barenque, L., Pedraza-Chaverri, J., and Santamaria, A., Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: Implications of modulating kynurenate as a protective strategy, Neurotoxicol. Teratol., 2011, vol. 33, no. 2, pp. 303–312.

    Article  CAS  PubMed  Google Scholar 

  84. Zádori, D., Nyiri, G., Szonyi, A., Szatmári, I., Fülöp, F., Toldi, J., Freund, T.F., Vécsei, L., and Klivényi, P., Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease, J. Neural Transm. (Vienna), 2011, vol. 118, no. 6, pp. 865–875. PMID: 21194001.https://doi.org/10.1007/s00702-010-0573-6

    Article  CAS  PubMed  Google Scholar 

  85. Shi, H., Enriquez, A., Rapadas, M., et al., NAD deficiency, congenital malformations, and niacin supplementation, N. Engl. J. Med., 2017, vol. 377, no. 6, pp. 544–552. PMID: 28792876.https://doi.org/10.1056/NEJMoa1616361

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided under the Priority 2030 program.

Author information

Authors and Affiliations

Authors

Contributions

Developing the general concept of the review, literature search and analysis, writing the review text were performed by V.S. Pykhtina.

Corresponding author

Correspondence to V. S. Pykhtina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants involved in the study.

CONFLICT OF INTEREST

The author of the work declares that she has no conflicts of interest.

Additional information

Translated by L. Solovyova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: 3-HAA, 3-hydroxyanthranilic acid; 3-HK, 3‑hydroxykynurenine; IL-1, interleukin; IL-6, interleukin; TNF-atumor necrosis factor alpha; IDO, indoleamine 2,3-dioxygenase; KYN, kynurenine; KYNA, kynurenic acid; KMO, kynurenine-3-monooxygenase; TDO, tryptophan 2,3-dioxygenase; TRP, tryptophan; QUIN, quinolinic acid; CNS, central nervous system; CKD, chronic kidney disease; IHD ischemic heart disease; CVD, Cardiovascular disease; NAD+, nicotinamide adenine dinucleotide; NADP nicotinamide adenine dinucleotide phosphate; PA, picolinic acid; NMDA, N-methyl-d-aspartate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pykhtina, V.S. The Role of Kynurenine Pathway Metabolites in the Development of Frailty in Older Adults. Adv Gerontol 13, 138–147 (2023). https://doi.org/10.1134/S2079057024600216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057024600216

Keywords:

Navigation