Skip to main content
Log in

Brain Aging

  • REVIEWS
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Brain aging is part of the aging of the whole body, largely determining the success of general aging and the quality of life of an older person. Brain aging is a complex multifactorial process that occurs throughout a human’s life, which includes changes at subcellular, tissue, and organ levels as well as at physiological level, mediating changes in neurophysiological (cognitive) functions. The review provides up-to-date data on morphological and physiological changes observed during natural aging; it discusses various phenotypes of brain aging, including both pathologically accelerated and “supernormal” aging; questions of the division between the norm and pathology are raised in the context of changes observed during brain aging; the factors both accelerating and decelerating the aging processes of the brain are considered along with linkage of natural aging with neurodegenerative and cerebrovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Ageing 2019: Highlights (ST/ESA/SER.A/430).

  2. Blinkouskaya, Y., Caçoilo, A., Gollamudi, T., Jalalian, S., and Weickenmeier, J., Brain aging mechanisms with mechanical manifestations, Mech. Ageing Dev., 2021, vol. 200, p. 111575.https://doi.org/10.1016/j.mad.2021.111575

  3. Harada, C.N., Natelson Love, M.C., and Triebel, K.L., Normal cognitive aging, Clin. Geriatr. Med., 2013, vol. 29, no. 4, pp. 737–752.https://doi.org/10.1016/j.cger.2013.07.002

  4. Salthouse, T.A., Trajectories of normal cognitive aging, Psychol. Aging, 2019, vol. 34, no. 1, pp. 17–24. https://doi.org/10.1037/pag0000288

    Article  PubMed  Google Scholar 

  5. MacDonald M.E. and Pike, G.B., MRI of healthy brain aging: A review, NMR Biomed., 2021, vol. 34, no. 9, p. e4564. https://doi.org/10.1002/nbm.4564

    Article  PubMed  Google Scholar 

  6. Bethlehem, R.A.I., Seidlitz, J., White, S.R., et al., Brain charts for the human lifespan, Nature, 2022, vol. 604, no. 7906, pp. 525–533. https://doi.org/10.1038/s41586-022-04554-y

    Article  CAS  PubMed  Google Scholar 

  7. von Bartheld, C.S., Myths and truths about the cellular composition of the human brain: A review of influential concepts, J. Chem. Neuroanat., 2018, vol. 93, pp. 2–15. https://doi.org/10.1016/j.jchemneu.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  8. Fjell, A.M. and Walhovd, K.B., Structural brain changes in aging: Courses, causes and cognitive consequences, Rev. Neurosci., 2010, vol. 21, no. 3, pp. 187–221. https://doi.org/10.1515/revneuro.2010.21.3.187

    Article  PubMed  Google Scholar 

  9. Dickstein, D.L., Weaver, C.M., Luebke, J.I., and Hof, P.R., Dendritic spine changes associated with normal aging, Neuroscience, 2013, vol. 251, pp. 21–32.https://doi.org/10.1016/j.neuroscience.2012.09.077

    Article  CAS  PubMed  Google Scholar 

  10. Clarke, L.E., Liddelow, S.A., Chakraborty, C., Münch, A.E., Heiman, M., and Barres, B.A., Normal aging induces A1-like astrocyte reactivity, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 8, pp. E1896–E1905. https://doi.org/10.1073/pnas.1800165115

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harrison, I.F., Ismail, O., Machhada, A., Colgan, N., Ohene, Y., Nahavandi, P., Ahmed, Z., Fisher, A., Meftah, S., Murray, T.K., Ottersen, O.P., Nagelhus, E.A., O’Neill, M.J., Wells, J.A., and Lythgoe, M.F., Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model, Brain, 2020, vol. 143, no. 8, pp. 2576–2593. https://doi.org/10.1093/brain/awaa179

    Article  PubMed  PubMed Central  Google Scholar 

  12. Knopman, D.S., Lundt, E.S., Therneau, T.M., Albertson, S.M., Gunter, J.L., Senjem, M.L., Schwarz, C.G., Mielke, M.M., Machulda, M.M., Boeve, B.F., Jones, D.T., Graff-Radford, J., Vemuri, P., Kantarci, K., Lowe, V.J., Petersen, R.C., and Jack, C.R., Jr., Alzheimer’s disease neuroimaging initiative. Association of initial β-amyloid levels with subsequent flortaucipir positron emission tomography changes in persons without cognitive impairment, JAMA Neurol., 2021, vol. 78, no. 2, pp. 217–228. https://doi.org/10.1001/jamaneurol.2020.3921

    Article  PubMed  Google Scholar 

  13. Allen, J.S., Bruss, J., Brown, C.K., and Damasio, H., Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region, Neurobiol. Aging, 2005, vol. 26, no. 9, pp. 1245–1260; discussion 1279–1282. https://doi.org/10.1016/j.neurobiolaging.2005.05.023

    Article  PubMed  Google Scholar 

  14. Schilling, K.G., Archer, D., Yeh, F.C., Rheault, F., Cai, L.Y., Hansen, C., Yang, Q., Ramdass, K., Shafer, A.T., Resnick, S.M., Pechman, K.R., Gifford, K.A., Hohman, T.J., Jefferson, A., Anderson, A.W., Kang, H., and Landman, B.A., Aging and white matter microstructure and macrostructure: A longitudinal multi-site diffusion MRI study of 1218 participants, Brain Struct. Funct., 2022, vol. 227, no. 6, pp. 2111–2125. https://doi.org/10.1007/s00429-022-02503-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Salat, D.H., Greve, D.N., Pacheco, J.L., Quinn, B.T., Helmer, K.G., Buckner, R.L., and Fischl, B., Regional white matter volume differences in nondemented aging and Alzheimer’s disease, Neuroimage, 2009, vol. 44, no. 4, pp. 1247–1258. https://doi.org/10.1016/j.neuroimage.2008.10.030

    Article  PubMed  Google Scholar 

  16. Wardlaw, J.M., Valdés Hernández, M.C., and Muñoz-Maniega, S., What are white matter hyperintensities made of? Relevance to vascular cognitive impairment, J. Am. Heart Assoc., 2015, vol. 4, no. 6, p. 001140. https://doi.org/10.1161/JAHA.114.001140

    Article  PubMed  Google Scholar 

  17. Pantoni, L., Fierini, F., and Poggesi, A., LADIS Study Group, Impact of cerebral white matter changes on functionality in older adults: An overview of the LADIS Study results and future directions, Geriatr. Gerontol. Int., 2015, vol. 15, suppl. 1, pp. 10–16. https://doi.org/10.1111/ggi.12665

    Article  PubMed  Google Scholar 

  18. Linortner, P., McDaniel, C., Shahid, M., Levine, T.F., Tian, L., Cholerton, B., and Poston, K.L., White matter hyperintensities related to Parkinson’s disease executive function, Mov. Disord. Clin. Pract., 2020, vol. 7, no. 6, pp. 629–638. https://doi.org/10.1002/mdc3.12956

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gogoleva, A.G. and Zakharov, V.V., The etiology, manifestations, and therapy of chronic cerebrovascular diseases, in Nevrologiya, neiropsikhiatriya, psikhosomatika, 2020, vol. 12, no. 5, pp. 84–91. https://doi.org/10.14412/2074-2711-2020-5-84-91

  20. Garnier-Crussard, A., Bougacha, S., Wirth, M., André, C., Delarue, M., Landeau, B., Mézenge, F., Kuhn, E., Gonneaud, J., Chocat, A., Quillard, A., Ferrand-Devouge, E., de La Sayette, V., Vivien, D., Krolak-Salmon, P., and Chételat, G., White matter hyperintensities across the adult lifespan: Relation to age, Aβ load, and cognition, Alzheimers Res. Ther., 2020, vol. 12, no. 1, p. 127. https://doi.org/10.1186/s13195-020-00669-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ogama, N., Sakurai, T., Nakai, T., Niida, S., Saji, N., Toba, K., Umegaki, H., and Kuzuya, M., Impact of frontal white matter hyperintensity on instrumental activities of daily living in elderly women with Alzheimer disease and amnestic mild cognitive impairment, PLoS One, 2017, vol. 12, no. 3, p. e0172484. https://doi.org/10.1371/journal.pone.0172484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rizvi, B., Lao, P.J., Chesebro, A.G., Dworkin, J.D., Amarante, E., Beato, J.M., Gutierrez, J., Zahodne, L.B., Schupf, N., Manly, J.J., Mayeux, R., and Brickman, A.M., Association of regional white matter hyperintensities with longitudinal Alzheimer-like pattern of neurodegeneration in older adults, JAMA Network Open, 2021, vol. 4, no. 10, p. e2125166. https://doi.org/10.1001/jamanetworkopen.2021.25166

    Article  PubMed  PubMed Central  Google Scholar 

  23. Al-Hazzouri, Z.A. and Yaffe, K., Arterial stiffness and cognitive function in the elderly, J. Alzheimers Dis., 2014, vol. 42, suppl. 4, no. 4, p. S503–S514. https://doi.org/10.3233/JAD-141563

  24. Drapkina, O.M. and Fadeeva, M.V., Arterial aging as a cardiovascular risk factor, Arterial’naya gipertenziya, 2014, vol. 20, no. 4, pp. 224–231. https://doi.org/10.18705/1607-419X-2014-20-4-224-231

  25. Liu, Q., Fang, J., Cui, C., Dong, S., Gao, L., Bao, J., Li, Y., Ma, M., Chen, N., and He, L., Association of aortic stiffness and cognitive decline: A systematic review and meta-analysis, Front. Aging Neurosci., 2021, vol. 13, p. 680205. https://doi.org/10.3389/fnagi.2021.680205

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martinez-Ramirez, S., Greenberg, S.M., and Viswanathan, A., Cerebral microbleeds: Overview and implications in cognitive impairment, Alzheimers Res. Ther., 2014, vol. 6, no. 3, p. 33. https://doi.org/10.1186/alzrt263

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tsubota-Utsugi, M., Satoh, M., Tomita, N., Hara, A., Kondo, T., Hosaka, M., Saito, S., Asayama, K., Inoue, R., Hirano, M., Hosokawa, A., Murakami, K., Murakami, T., Metoki, H., Kikuya, M., Izumi, S.I., Imai, Y., and Ohkubo, T., Lacunar infarcts rather than white matter hyperintensity as a predictor of future higher level functional decline: The Ohasama study, J. Stroke Cerebrovasc. Dis., 2017, vol. 26, no. 2, pp. 376–384. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.036

  28. Wrigglesworth, J., Ward, P., Harding, I.H., Nilaweera, D., Wu, Z., Woods, R.L., and Ryan, J., Factors associated with brain ageing—a systematic review, BMC Neurol., 2021, vol. 21, no. 1, p. 312. https://doi.org/10.1186/s12883-021-02331-4

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bogolepova, A.N., Vasenina, E.E., Gomzyakova, N.A., et al., Clinical guidelines for cognitive disorders in elderly and older patients, Zh. Nevr. Psikhiatr. im. S.S. Korsakova, 2021, vol. 121, nos. 10-3, pp. 6–137.

  30. Azam, S., Haque, M.E., Balakrishnan, R., Kim, I.S., and Choi, D.K., The ageing brain: Molecular and cellular basis of neurodegeneration, Front. Cell Dev. Biol., 2021, vol. 9, p. 683459. https://doi.org/10.3389/fcell.2021.683459

    Article  PubMed  PubMed Central  Google Scholar 

  31. de Godoy, L.L., Alves, C.A.P.F., Saavedra, J.S.M., Studart-Neto, A., Nitrini, R., da Costa Leite, C., and Bisdas, S., Understanding brain resilience in superagers: A systematic review, Neuroradiology, 2021, vol. 63, no. 5, pp. 663–683. https://doi.org/10.1007/s00234-020-02562-1

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Cherdak.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The author of this work declares that she has no conflicts of interest.

Additional information

Translated by L. Solovyova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherdak, M.A. Brain Aging. Adv Gerontol 13, 70–77 (2023). https://doi.org/10.1134/S2079057024600198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057024600198

Keywords:

Navigation