Skip to main content
Log in

Senolytic Drugs: Implications for Clinical Practice

  • REVIEWS
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Studying the mechanisms of aging is one of the most important goals of modern science. A significant amount of data on the processes associated with a decrease in the functional ability to regenerate, cell proliferation and resistance to adverse factors with age has been accumulated due to fundamental research. The aim of the review was to study the mechanism of drugs with the senolytic activity, to determine the main targets of their effect at the cellular level, and also to evaluate the prospects for their clinical use. The relevance of this topic is confirmed by the increasing number of clinical trials of senolytics, many of which have ambiguous results and require further analysis and elimination of revealed difficulties and shortcomings. We reviewed the literature on Pubmed and Scopus platforms over the past 10 years in order to find information about the mechanisms of senotherapy and the possibility of using senolytics in clinical medicine. The focus was on those senolytic drugs that were used in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Dobrokhleb, V.G., When society ages, Her. Russ. Acad. Sci., 2021, vol. 91, no. 5, pp. 587–592. https://doi.org/10.1134/S1019331621050026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moskalev, A., Chernyagina, E., Kudryavtseva, A., and Shaposhnikov, M., Geroprotectors: A unified concept and screening approaches, Aging Dis., 2017, vol. 8, no. 3, pp. 354–363. PMID: 28580190; PMCID: PMC5440114.https://doi.org/10.14336/AD.2016.1022

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lagoumtzi, S.M. and Chondrogianni, N., Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases, Free Radic. Biol. Med., 2021, vol. 171, pp. 169–190. PMID: 33989756.https://doi.org/10.1016/j.freeradbiomed.2021.05.003

    Article  CAS  PubMed  Google Scholar 

  4. Tchkonia, T., Palmer, A.K., and Kirkland, J.L., New horizons: Novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms, J. Clin. Endocrinol. Metab., 2021, vol. 106, no. 3, pp. e1481–e1487. https://doi.org/10.1210/clinem/dgaa728

    Article  PubMed  Google Scholar 

  5. Kirkland, J., Tchkonia, T., Zhu, Yi, Niedernhofer, L., and Robbins, P., The clinical potential of senolytic drugs, J. Am. Geriatr. Soc., 2017, vol. 65, no. 10, pp. 2297–2301. https://doi.org/10.1111/jgs.14969

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roger, L., Tomas, F., and Gire, V., Mechanisms and regulation of cellular senescence, Int. J. Mol. Sci., 2021, vol. 22, no. 23, p. 13173. https://doi.org/10.3390/ijms222313173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prieto, L.I. and Baker, D.J., Cellular senescence and the immune system in cancer, Gerontology, 2019, vol. 65, no. 5, pp. 505–512. https://doi.org/10.1159/000500683

    Article  CAS  PubMed  Google Scholar 

  8. Chandra, A. and Rajawat, J., Skeletal aging and osteoporosis: Mechanisms and therapeutics, Int. J. Mol. Sci., 2021, vol. 22, no. 7, p. 3553. https://doi.org/10.3390/ijms22073553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Almeida, M.I., Silva, A.M., Vasconcelos, D.M., et al., miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis, Oncotarget, 2016, vol. 7, no. 1, pp. 7–22. https://doi.org/10.18632/oncotarget.6589

    Article  PubMed  Google Scholar 

  10. Kudlova, N., De Sanctis, J.B., and Hajduch, M., Cellular senescence: Molecular targets, biomarkers, and senolytic drugs, Int. J. Mol. Sci., 2022, vol. 23, no. 8, p. 4168. https://doi.org/10.3390/ijms23084168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khosla, S., Farr, J.N., Tchkonia, T., and Kirkland, J.L., The role of cellular senescence in ageing and endocrine disease, Nat. Rev. Endocrinol., 2020, vol. 16, no. 5, pp. 263–275. https://doi.org/10.1038/s41574-020-0335-y

    Article  CAS  PubMed  Google Scholar 

  12. Amaya-Montoya, M., Pérez-Londoño, A., Guatibonza-García, V., Vargas-Villanueva, A., and Mendivil, C.O., Cellular senescence as a therapeutic target for age-related diseases: A review, Adv. Ther., 2020, vol. 37, no. 4, pp. 1407–1424. https://doi.org/10.1007/s12325-020-01287-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meijnikman, A.S., van Olden, C.C., Aydin, O., Herrema, H., Kaminska, D., Lappa, D., et al., Hyperinsulinemia is highly associated with markers of hepatocytic senescence in two independent cohorts, Diabetes, 2022, vol. 71, no. 9, pp. 1929–1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, L., Wang, B., Gasek, N.S., Zhou, Y., Cohn, R.L., Martin, D.E., et al., Targeting p21(Cip1) highly expressing cells in adipose tissue alleviates insulin resistance in obesity, Cell Metabolism, 2022, vol. 34, no. 1, p. 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palmer, A.K., Tchkonia, T., and Kirkland, J.L., Targeting cellular senescence in metabolic disease, Mol. Metab., 2022, vol. 66, p. 101601. https://doi.org/10.1016/j.molmet.2022.101601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elsallabi, O., Patruno, A., Pesce, M., Cataldi, A., Carradori, S., and Gallorini, M., Fisetin as a senotherapeutic agent: Biopharmaceutical properties and crosstalk between cell senescence and neuroprotection, Molecules, 2022, vol. 27, no. 3, p. 738. https://doi.org/10.3390/molecules27030738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Englund, D.A., Zhang, X., Aversa, Z., and LeBrasseur, N.K., Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mech. Ageing Dev., 2021, vol. 200, p. 111595. https://doi.org/10.1016/j.mad.2021.111595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Partridge, L., Fuentealba, M., and Kennedy, B.K., The quest to slow ageing through drug discovery, Nat. Rev. Drug Discov., 2020, vol. 19, no. 8, pp. 513–532. https://doi.org/10.1038/s41573-020-0067-7

    Article  CAS  PubMed  Google Scholar 

  19. Zhavoronkov, A., Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections, Aging, 2020, vol. 12, no. 8, pp. 6492–6510. https://doi.org/10.18632/aging.102988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, L., Pitcher, L.E., Prahalad, V., Niedernhofer, L.J., and Robbins, P.D., Targeting cellular senescence with senotherapeutics: Senolytics and senomorphics [published online ahead of print, 2022 Jan 11], FEBS J., 2022, vol. 290, no. 5, pp. 1362–1383. https://doi.org/10.1111/febs.16350

    Article  CAS  PubMed  Google Scholar 

  21. Niedernhofer, L. and Robbins, P., Senotherapeutics for healthy ageing, Nat. Rev. Drug Discov., 2018, p. 377. https://doi.org/10.1038/nrd.2018.44

  22. Carreno, G., Guiho, R., and Martinez-Barbera, J.P., Cell senescence in neuropathology: A focus on neurodegeneration and tumours, Neuropathol. Appl. Neurobiol., 2021, vol. 47, no. 3, pp. 359–378. https://doi.org/10.1111/nan.12689

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhu, Y., Tchkonia, T., Pirtskhalava, T., et al., The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs, Aging Cell, 2015, vol. 14, no. 4, pp. 644–658. https://doi.org/10.1111/acel.12344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Justice, J.N. et al., Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study, EBioMedicine, 2019, vol. 40, pp. 554–563.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shao, Z., Wang, B., Shi, Y., et al., Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis, Osteoarthritis Cartilage, 2021, vol. 29, no. 3, pp. 413–422. https://doi.org/10.1016/j.joca.2020.11.006

    Article  CAS  PubMed  Google Scholar 

  26. Song, S., Tchkonia, T., Jiang, J., Kirkland, J.L., and Sun, Y., Targeting senescent cells for a healthier aging: Challenges and opportunities, Adv. Sci. (Weinh.), 2020, vol. 7, no. 23, p. 2002611. PMID: 33304768; PMCID: PMC7709980.https://doi.org/10.1002/advs.202002611

    Article  CAS  PubMed  Google Scholar 

  27. Kovacovicova, K., Skolnaja, M., Heinmaa, M., et al., Senolytic cocktail Dasatinib + Quercetin (D + Q) does not enhance the efficacy of senescence-inducing chemotherapy in liver cancer, Front. Oncol., 2018, vol. 8, p. 459. https://doi.org/10.3389/fonc.2018.00459

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chang, J., Wang, Y., Shao, L., et al., Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat. Med., 2016, vol. 22, no. 1, pp. 78–83. https://doi.org/10.1038/nm.4010

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., et al., Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of antiapoptotic factors, Aging Cell, 2016, vol. 15, no. 3, pp. 428–435. https://doi.org/10.1111/acel.12445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harrison, C.N., Garcia, J.S., Somervaille, T.C.P., Foran, J.M., Verstovsek, S., Jamieson, C., Mesa, R., Ritchie, E.K., Tantravahi, S.K., Vachhani, P., O’Connell, C.L., Komrokji, R.S., Harb, J., Hutti, J.E., Holes, L., Masud, A.A., Nuthalapati, S., Potluri, J., and Pemmaraju, N., Addition of Navitoclax to ongoing Ruxolitinib therapy for patients with myelofibrosis with progression or suboptimal response: Phase II safety and efficacy, J. Clin. Oncol., 2022, vol. 40, no. 15, pp. 1671–1680. PMID: 35180010; PMCID: PMC9113204.https://doi.org/10.1200/JCO.21.02188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tse, C., Shoemaker, A.R., Adickes, J., Anderson, M.G., Chen, J., and Jin, S., ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor, Cancer Res., 2008, vol. 68, no. 9, pp. 3421–3428.

    Article  CAS  PubMed  Google Scholar 

  32. Schoenwaelder S.M., Jarman K.E., Gardiner. E.E., et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets, Blood, 2011, vol. 118, no. 6, pp. 1663–1674. https://doi.org/10.1182/blood-2011-04-347849

    Article  CAS  PubMed  Google Scholar 

  33. National Center for Biotechnology Information, PubChem Compound Summary for CID 24978538, Navitoclax. https://pubchem.ncbi.nlm.nih.gov/compound/Navitoclax. Cited May 23, 2023.

  34. Qi, J., Liu, Y., Yang, P., et al., Heat shock protein 90 inhibition by 17-dimethylaminoethylamino-17-demethoxygeldanamycin protects blood–brain barrier integrity in cerebral ischemic stroke, Am. J. Transl. Res., 2015, vol. 7, no. 10, pp. 1826–1837.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vannas, C., Andersson, L., Dolatabadi, S., et al., Different HSP90 inhibitors exert divergent effect on myxoid liposarcoma in vitro and in vivo, Biomedicines, 2022, vol. 10, no. 3, p. 624. https://doi.org/10.3390/biomedicines10030624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fuhrmann-Stroissnigg, H., Ling, Y.Y., Zhao, J., et al., Identification of HSP90 inhibitors as a novel class of senolytics, Nat. Commun., 2017, vol. 8, p. 422. https://doi.org/10.1038/s41467-017-00314-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. National Center for Biotechnology Information, PubChem Compound Summary for CID 53316138, 17-Dmag. https://pubchem.ncbi.nlm.nih.gov/compound/17-Dmag. Cited May 23, 2023.

  38. Cherif, H., Bisson, D.G., Mannarino, M., Rabau, O., Ouellet, J.A., and Haglund, L., Senotherapeutic drugs for human intervertebral disc degeneration and low back pain, eLife, 2020, vol. 9, p. e54693. https://doi.org/10.7554/eLife.54693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dyatlova, A.S., Dudkov, A., Lin’kova, N.S., et al., Molecular markers of caspase-dependent mitochondrial apoptosis: Role in pathology development and in cell aging processes, Usp. Sovr. Biol., 2018, no. 2, pp. 126–137. https://doi.org/10.7868/s0042132418020023

  40. Ray-Coquard, I., Blay, J.Y., Italiano, A., et al., Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: An exploratory proof-of-mechanism study, Lancet Oncol., 2012, vol. 13, no. 11, pp. 1133–1140. https://doi.org/10.1016/S1470-2045(12)70474-6

    Article  CAS  PubMed  Google Scholar 

  41. National Center for Biotechnology Information, PubChem Compound Summary for CID 57406853. https://pubchem.ncbi.nlm.nih.gov/compound/rg7112. Cited May 23, 2023.

  42. Ishige, K., Schubert, D., and Sagara, Y., Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms, Free Radic. Biol. Med., 2001, vol. 30, no. 4, pp. 433–446. https://doi.org/10.1016/s0891-5849(00)00498-6

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, Y., Doornebal, E.J., Pirtskhalava, T., et al., New agents that target senescent cells: The flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463, Aging, 2017, vol. 9, no. 3, pp. 955–963. https://doi.org/10.18632/aging.101202

    Article  PubMed  PubMed Central  Google Scholar 

  44. Demaria, M., Ohtani, N., Youssef, S.A., et al., An essential role for senescent cells in optimal wound healing through secretion of PDGFAA, Dev. Cell, 2014, vol. 31, no. 6, pp. 722–733. https://doi.org/10.1016/j.devcel.2014.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. COVID-FISETIN: Pilot in SARS-CoV-2 of Fisetin to alleviate dysfunction and inflammation. https://clinicaltrials.gov/ct2/show/NCT04476953. Cited April 9, 2023.

  46. National Center for Biotechnology Information, PubChem Compound Summary for CID 5281614, Fisetin. https://pubchem.ncbi.nlm.nih.gov/compound/Fisetin. Cited May 23, 2023.

  47. Valieva, Y., Ivanova, E., Fayzullin, A., Kurkov, A., and Igrunkova, A., Senescence-associated β-galactosidase detection in pathology, Diagnostics, 2022, vol. 12, no. 10, p. 2309. https://doi.org/10.3390/diagnostics12102309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shivarathri, R., Jenull, S., Stoiber, A., et al., The two-component response regulator Ssk1 and the mitogen-activated protein kinase Hog1 control antifungal drug resistance and cell wall architecture of Candida auris, mSphere, 2020, vol. 5, no. 5, p. e00973-20. https://doi.org/10.1128/mSphere.00973-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cai, Y., Zhou, H., Zhu, Y., et al., Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice, Cell Res., vol. 30, pp. 574–589. https://doi.org/10.1038/s41422-020-0314-9

  50. Jiang, K.X., Liu, Q.Q., Bai, N., Zhu, M.C., Zhang, K.Q., and Yang, J.K., AoSsk1, a response regulator required for mycelial growth and development, stress responses, trap formation, and the secondary metabolism in Arthrobotrys oligospora, J. Fungi, 2022, vol. 8, no. 3, p. 260. https://doi.org/10.3390/jof8030260

    Article  CAS  Google Scholar 

  51. National Center for Biotechnology Information, PubChem Compound Summary for CID 162642741. https://pubchem.ncbi.nlm.nih.gov/compound/162642741. Cited May 24, 2023.

Download references

Funding

Funding was provided under the Priority 2030 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ilyushchenko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Novikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: SASP, senescence-associated secretory phenotype; TNF-α, tumor necrosis factor α; AMPK, AMP-activated protein kinase; EGFR, epidermal growth factor receptor; MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; SASP, senescence-associated secretory phenotype; TGF-β, transforming growth factor β; VEGF, vascular endothelial growth factor; p21CIP1, cyclin-dependent kinase inhibitor 1; SAHF, senescence-associated heterochromatin foci; P53, transcription factor, tumor suppressor; FOXO, transcription factor of the Forkhead subclass O family; PI3K, phosphoinositide 3-kinase; EGF, epidermal growth factor; JAK, cytoplasmic proteins of the Janus kinase family; STAT, family of signaling proteins that regulate transcription; NF-κB, universal transcription factor that controls expression of immune response, apoptosis and cell cycle genes; Bcl2 and BclX, antiapoptotic proteins; AKT, protein kinase, also known as protein kinase B (PKB); ATM, ataxia telangiectasia mutated, signal DDR kinases; ATR, ataxia telangiectasia and Rad3 related, signal DDR kinase; CFS, cytosolic chromatin fragments; DDR, DNA damage response; HSF-1, heat shock transcription factor 1; IL-6, IL-1α, proinflammatory interleukins; INK4/ARF, gene locus, encodes key effectors of cell growth arrest (p15INK4B, p16, and ARF); MCP1 (=CCL2), monocyte chemoattractant protein 1; MDC1, mediator of DNA damage checkpoint 1; NRF2, nuclear factor-E2-related factor 2; p16INK4a, tumor suppressor; Rb, retinoblastoma protein, tumor suppressor protein; SC, senescent cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyushchenko, A.K., Matchekhina, L.V., Tkacheva, O.N. et al. Senolytic Drugs: Implications for Clinical Practice. Adv Gerontol 13, 62–69 (2023). https://doi.org/10.1134/S2079057024600186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057024600186

Keywords:

Navigation