Skip to main content
Log in

Mitochondrial Antioxidant SkQ1 Affects the GABAergic but Not the Glutamatergic System in the Hippocampus of Wistar and Senescence Accelerated OXYS Rats

  • RESEARCH ARTICLES
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Numerous studies have shown that mitochondria-targeted antioxidant SkQ1 can increase the lifespan of many species and suppress the development of various age-related diseases. Previously we demonstrated that SkQ1 suppresses all manifestations of accelerated senescence in OXYS rats, including the development of the main signs of Alzheimer’s disease (AD). GABA and glutamate are two of the most abundant neurotransmitters in the central nervous system, and it was showed that changes in their signaling accompany aging and the development of AD. Previously, we showed delicate age-related changes of the components of glutamate/GABA system in Wistar and OXYS rats, a unique model of AD. Here we investigated the influence of the treatment with SkQ1 from 12 through 18 months of age (that is, during the active progression of AD-like pathology) on glutamate/GABA system in the rat hippocampus. Our data demonstrated that the neuroprotective effects of long-term administration of SkQ1 are mediated by its effect on the GABAergic but not the glutamatergic system in the hippocampus of Wistar and OXYS rats. Western blotting revealed an increase in the level of glutamate decarboxylase GAD67 in rats of both strains, a decrease in the GABA transporter GAT1 in Wistar rats, and a tendency towards abrogation of the increased level of GABA receptor subunits GABAAr1 in OXYS rats. Thus, we showed that the neuroprotective effects of long-term treatment with SkQ1 are mediated by its effect on the GABAergic but not the glutamatergic system in the hippocampus of Wistar and OXYS rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Skulachev, M.V. and Skulachev, V.P., Programmed aging of mammals: Proof of concept and Prospects of biochemical approaches for anti-aging therapy, Biochemistry (Moscow), 2017, vol. 82, no. 12, pp. 1403–1422. https://doi.org/10.1134/S000629791712001X

    Article  CAS  PubMed  Google Scholar 

  2. Kolosova, N.G., Kozhevnikova, O.S., Muraleva, N.A., Rudnitskaya, E.A., Rumyantseva, Y.V., Stefanova, N.A., Telegina, D.V., Tyumentsev, M.A., and Fursova, A.Z., SkQ1 as a tool for controlling accelerated senescence program: Experiments with OXYS rats, Biochemistry (Moscow), 2022, vol. 87, no. 12, pp. 1552–1562. https://doi.org/10.1134/S0006297922120124

    Article  CAS  PubMed  Google Scholar 

  3. Stefanova, N.A., Kozhevnikova, O.S., Vitovtov, A.O., Maksimova, K.Y., Logvinov, S.V., Rudnitskaya, E.A., Korbolina, E.E., Muraleva, N.A., and Kolosova, N.G., Senescence-accelerated OXYS rats: A model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease, Cell Cycle, 2014, vol. 13, no. 6, pp. 898–909. https://doi.org/10.4161/cc.28255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stefanova, N.A., Muraleva, N.A., Maksimova, K.Y., Rudnitskaya, E.A., Kiseleva, E., Telegina, D.V., and Kolosova, N.G., An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology, Aging (Albany, New York), 2016, vol. 8, no. 11, pp. 2713–2733. https://doi.org/10.18632/aging.101054

    Article  CAS  Google Scholar 

  5. Andersen, J.V., Schousboe, A., and Verkhratsky, A., Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle, Prog. Neurobiol., 2022, vol. 217, p. 102331. https://doi.org/10.1016/j.pneurobio.2022.102331

    Article  CAS  PubMed  Google Scholar 

  6. Telegina, D.V., Antonenko, A.K., Fursova, A.Z., and Kolosova, N.G., The glutamate/GABA system in the retina of male rats: Effects of aging, neurodegeneration, and supplementation with melatonin and antioxidant SkQ1, Biogerontol., 2022, vol. 23, no. 5, pp. 571–585. https://doi.org/10.1007/s10522-022-09983-w

    Article  CAS  Google Scholar 

  7. Telegina, D.V., Antonenko, A.K., and Kolosova, N.G., Differences in changes in the glutamate/GABA system activity in the rat retina during aging and the development of retinopathy at nighttime and daytime, Neurochem. J., 2023, vol. 17, pp. 380–386. https://doi.org/10.1134/S1819712423030170

    Article  CAS  Google Scholar 

  8. Burnyasheva, A.O., Stefanova, N.A., Kolosova, N.G., and Telegina, D.V., Changes in the glutamate/GABA system in the hippocampus of rats with age and during of the Alzheimer’s disease signs development, Biochemistry (Moscow), 2023, vol. 88, no. 12, pp. 2358–2374.https://doi.org/10.1134/S0006297923120027

    Article  Google Scholar 

  9. Haugeto, O., Ullensvang, K., Levy, L.M., Chaudhry, F.A., Honore, T., Nielsen, M., Lehre, K.P., and Danbolt, N.C., Brain glutamate transporter proteins form homomultimers, J. Biol. Chem., 1996, vol. 271, no. 44, pp. 27 715–27 722. https://doi.org/10.1074/jbc.271.44.27715

    Article  Google Scholar 

  10. Xu, Y., Zhao, M., Han, Y., and Zhang, H., GABAergic inhibitory interneuron deficits in Alzheimer’s disease: Implications for treatment, Front. Neurosci., 2020, vol. 14, p. 660. https://doi.org/10.3389/fnins.2020.00660

    Article  PubMed  PubMed Central  Google Scholar 

  11. Snytnikova O., Telegina D., Savina E., Tsentalovich Y., and Kolosova N., Quantitative metabolomic analysis of the rat hippocampus: Effects of age and of the development of Alzheimer’s disease-like pathology, J. Alzheimers Dis., 2023 (in press). https://doi.org/10.3233/JAD-230706

  12. Thompson, Ray M., Weickert, C.S., Wyatt, E., and Webster, M.J., Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders, J. Psychiatry Neurosci., 2011, vol. 36, no. 3, pp. 195–203. https://doi.org/10.1503/jpn.100048

  13. Porcher, C., Medina, I., and Gaiarsa, J.L., Mechanism of BDNF modulation in GABAergic synaptic transmission in healthy and disease brains, Front. Cell Neurosci., 2018, vol. 12, p. 273. https://doi.org/10.3389/fncel.2018.00273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hernandez-Rabaza, V., Cabrera-Pastor, A., Taoro-Gonzalez, L., Gonzalez-Usano, A., Agusti, A., Balzano, T., Llansola, M., and Felipo, V., Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia, J. Neuroinflammation, 2016, vol. 13, no. 1, р. 83. https://doi.org/10.1186/s12974-016-0549-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kutiyanawalla, A., Promsote, W., Terry, A., and Pillai, A., Cysteamine treatment ameliorates alterations in GAD67 expression and spatial memory in heterozygous reeler mice, Int. J. Neuropsychopharmacol., 2012, vol. 15, no. 8, pp. 1073–1086. https://doi.org/10.1017/S1461145711001180

    Article  CAS  PubMed  Google Scholar 

  16. Liu, J., Feng, X., Wang, Y., Xia, X., and Zheng, J.C., Astrocytes: GABAceptive and GABAergic cells in the brain, Front. Cell Neurosci., 2022, vol. 16, p. 892497. https://doi.org/10.3389/fncel.2022.892497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rudnitskaya, E.A., Burnyasheva, A.O., Kozlova, T.A., Peunov, D.A., Kolosova, N.G., and Stefanova, N.A., Changes in glial support of the hippocampus during the development of an Alzheimer’s disease-like pathology and their correction by mitochondria-targeted antioxidant SkQ1, Int. J. Mol. Sci., 2022, vol. 23, no. 3, p. 1134. https://doi.org/10.3390/ijms23031134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, D.H., Kim, J.M., Park, S.J., Lee, S., Shin, C.Y., Cheong, J.H., and Ryu, J.H., Hippocampal extracellular signal-regulated kinase signaling has a role in passive avoidance memory retrieval induced by GABAA Receptor modulation in mice, Neuropsychopharmacology, 2012, vol. 37, no. 5, pp. 1234–1244. https://doi.org/10.1038/npp.2011.311

    Article  CAS  PubMed  Google Scholar 

  19. Kim, J., Lee, S., Kang, S., Kim, S.H., Kim, J.C., Yang, M., and Moon, C., Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration, Neural. Regen. Res., 2017, vol. 12, no. 10, pp. 1733–1741. https://doi.org/10.4103/1673-5374.217353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Govindpani, K., Calvo-Flores Guzman, B., Vinnakota, C., Waldvogel, H.J., Faull, R.L., and Kwakowsky, A., Towards a better understanding of GABAergic remodeling in Alzheimer’s disease, Int. J. Mol. Sci., 2017, vol. 18, no. 8, p. 1813. https://doi.org/10.3390/ijms18081813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nykanen, N.P., Kysenius, K., Sakha, P., Tammela, P., and Huttunen, H.J., Gamma-aminobutyric acid type A (GABAA) receptor activation modulates tau phosphorylation, J. Biol. Chem., 2012, vol. 287, no. 9, pp. 6743–6752. https://doi.org/10.1074/jbc.M111.309385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bazzari, A.H. and Parri, H.R., Neuromodulators and long-term synaptic plasticity in learning and memory: A steered-glutamatergic perspective, Brain Sci., 2019, vol. 9, no. 11, p. 300. https://doi.org/10.3390/brainsci9110300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cercato, M.C., Vázquez, C.A., Kornisiuk, E., Aguirre, A.I., Colettis, N., Snitcofsky, M., Jerusalinsky, D.A., and Baez, M.V., GluN1 and GluN2A NMDA receptor subunits increase in the hippocampus during memory consolidation in the rat, Front. Behav. Neurosci., 2016, vol. 10, p. 242. https://doi.org/10.3389/fnbeh.2016.00242

    Article  CAS  PubMed  Google Scholar 

  24. Baez, M.V., Cercato, M.C., and Jerusalinsky, D.A., NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition, Neural. Plast., 2018, vol. 2018, p. 5093048 https://doi.org/10.1155/2018/5093048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boddum, K., Jensen, T.P., Magloire, V., Kristiansen, U., Rusakov, D.A., Pavlov, I., and Walker, M.C., Astrocytic GABA transporter activity modulates excitatory neurotransmission, Nat. Commun., 2016, vol. 7, p. 13572. https://doi.org/10.1038/ncomms13572

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Czapski, G.A. and Strosznajder, J.B., Glutamate and GABA in microglia–neuron cross-talk in Alzheimer’s disease, Int. J. Mol. Sci., 2021, vol. 22, no. 21, p. 11677. https://doi.org/10.3390/ijms222111677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

SkQ1 was kindly provided by Maxim Skulachev from the Institute of Mitoengineering at Moscow State University (Moscow, Russia).

Funding

This research has been supported by Project FWNR-2022-0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Telegina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The study was conducted according to Directive 2010/63/EU of the European Parliament and of the European Council of September 22, 2010 and was approved by the Commission on Bioethics at the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (decision # 85/1 of June 18, 2021), Novosibirsk, Russia.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telegina, D.V., Kolosova, N.G. Mitochondrial Antioxidant SkQ1 Affects the GABAergic but Not the Glutamatergic System in the Hippocampus of Wistar and Senescence Accelerated OXYS Rats. Adv Gerontol 13, 36–43 (2023). https://doi.org/10.1134/S2079057024600058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057024600058

Keywords:

Navigation