Skip to main content
Log in

Patterns of Expression of the Key Genes of the BDNF System and Serotonin Receptors in the Brain of OXYS Rats in the Development of the Signs of Alzheimer’s Disease

  • RESEARCH ARTICLES
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

In spite of numerous studies, pathogenesis of the sporadic (not inherited) form of Alzheimer’s disease (AD) still remains largely unclear; nevertheless, there is general consensus as regards the complex involvement of neurotrophic factors and neurotransmitters in the mechanisms of this disease. In light of recent data on the physical interaction between serotonin (5-HT) receptors and receptors of the brain-derived neurotrophic factor (BDNF), the reciprocal modulation between 5-HT and BDNF systems is of particular interest, inter alia, in the context of AD development. The OXYS lineage of prematurely aging rats is a unique model of sporadic AD. Previously, it has been reported on the changed neurotrophin balance in the brain of these animals; however, the changes in the expression of BDNF and its receptors in the dynamics of development of AD symptoms has been studied insufficiently. Even less is known about the patterns of expression of 5-HT receptors in OXYS rat brain. In the present work, we have compared the expression of BDNF and its receptors, TrkB and p75NTR, as well as serotonin 5-НТ, 5-НТ, 5-НТ4 and 5-НТ7 receptors in the brain of OXYS and Wistar rats aged 20 days, 3.5 and 18 months. The frontal cortex of 20-day-old OXYS rats demonstrated a significant increase in the mRNA level of the Bdnf, Htr2a and Htr7 genes and, at the same time, a decrease in the ratio of phosphorylated and nonphosphorylated forms of the TrkB receptor. In the hippocampus of 20-day-old OXYS rats, the mRNA levels of the Bdnf, Htr1a, Htr2a and Htr4 genes are also elevated. A substantially higher mRNA level of the above genes for 5-HT receptors was observed in the hippocampus of OXYS rats also at the age of 3.5 months, in the period of manifestation of the first AD symptoms. The nature of change in gene expression patterns indicates the potential involvement of 5-HT receptors in suppression of the TrkB receptor function in the early period of postnatal development of OXYS rats, which may be one of the mechanisms, through which 5-HT receptors are involved in the development of pathological process in the period of manifestation of AD symptoms in OXYS rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Liu, R.M., Aging, cellular senescence, and Alzheimer’s disease, Int. J. Mol. Sci., 2022, vol. 23, no. 4, p. 1989. https://doi.org/10.3390/ijms23041989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soria Lopez, J.A., González, H.M., and Léger, G.C., Alzheimer’s disease, Handb. Clin. Neurol., 2019, vol. 167, pp. 231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3

    Article  PubMed  Google Scholar 

  3. Zagrebelsky, M., Tacke, C., and Korte, M., BDNF signaling during the lifetime of dendritic spines, Cell Tissue Res., 2020, vol. 382, pp. 185–199. https://doi.org/10.1007/s00441-020-03226-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Minichiello, L., TrkB signalling pathways in LTP and learning, Nat. Rev. Neurosci., 2009, vol. 10, pp. 850–860. https://doi.org/10.1038/nrn2738

    Article  CAS  PubMed  Google Scholar 

  5. Ibrahim, A.M., Chauhan, L., Bhardwaj, A., et al., Brain-derived neurotropic factor in neurodegenerative disorders, Biomedicines, 2022, vol. 10. https://doi.org/10.3390/biomedicines10051143

  6. Allen, S.J., Watson, J.J., Shoemark, D.K., et al., GDNF, NGF and BDNF as therapeutic options for neurodegeneration, Pharmacol. Ther., 2013, vol. 138, pp. 155–175. https://doi.org/10.1016/j.pharmthera.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  7. Invernizzi, S., Simoes Loureiro, I., Kandana Arachchige, K.G., and Lefebvre, L., Late-life depression, cognitive impairment, and relationship with Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 2022, vol. 50, pp. 414–424. https://doi.org/10.1159/000519453

    Article  CAS  Google Scholar 

  8. Roux, C.M., Leger, M., and Freret, T., Memory disorders related to hippocampal function: The interest of 5‑HT(4)Rs targeting, Int. J. Mol. Sci., 2021, vol. 22, no. 21, p. 12082. https://doi.org/10.3390/ijms222112082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nirogi, R., Jayarajan, P., Shinde, A., et al., Progress in investigational agents targeting serotonin-6 receptors for the treatment of brain disorders, Biomolecules, 2023, vol. 13, no. 2, p. 309. https://doi.org/10.3390/biom13020309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang, S., Sydney, E.J., Runyan, A.M., et al., 5-HT4 receptor agonists treatment reduces tau pathology and behavioral deficit in the PS19 mouse model of tauopathy, Preprint of bioRxiv Prepr. Serv. Biol., 2023. https://doi.org/10.1101/2023.02.03.526871

  11. Labus, J., Röhrs, K.-F., Ackmann, J., et al., Amelioration of tau pathology and memory deficits by targeting 5-HT7 receptor, Prog. Neurobiol., 2021, vol. 197, p. 101900. https://doi.org/10.1016/j.pneurobio.2020.101900

    Article  CAS  PubMed  Google Scholar 

  12. Jahreis, K., Brüge, A., Borsdorf, S., et al., Amisulpride as a potential disease-modifying drug in the treatment of tauopathies, Alzheimers Dement., 2023. https://doi.org/10.1002/alz.13090

  13. Popova, N.K. and Naumenko, V.S., Neuronal and behavioral plasticity: The role of serotonin and BDNF systems tandem, Expert Opin. Ther. Targets, 2019, vol. 23, pp. 227–239. https://doi.org/10.1080/14728222.2019.1572747

    Article  CAS  PubMed  Google Scholar 

  14. Homberg, J.R., Molteni, R., Calabrese, F., and Riva, M.A., The serotonin–BDNF duo: Developmental implications for the vulnerability to psychopathology, Neurosci. Biobehav. Rev., 2014, vol. 43, pp. 35–47. https://doi.org/10.1016/j.neubiorev.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  15. Ilchibaeva, T., Tsybko, A., Zeug, A., et al., Serotonin receptor 5-HT2A regulates TrkB receptor function in heteroreceptor complexes, Cells, 2022, vol. 11. https://doi.org/10.3390/cells11152384

  16. Stefanova, N.A., Muraleva, N.A., Korbolina, E.E., et al., Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 2015, vol. 6, pp. 1396–1413. https://doi.org/10.18632/oncotarget.2751

    Article  PubMed  Google Scholar 

  17. Stefanova, N.A., Maksimova, K.Y., Kiseleva, E., et al., Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology, J. Pineal Res., 2015, vol. 59, pp. 163–177. https://doi.org/10.1111/jpi.12248

    Article  CAS  PubMed  Google Scholar 

  18. Rudnitskaya, E.A., Kolosova, N.G., and Stefanova, N.A., Impact of changes in neurotrophic supplementation on development of Alzheimer’s disease-like pathology in OXYS rats, Biochem., 2017, vol. 82, pp. 318–329. https://doi.org/10.1134/S0006297917030105

    Article  CAS  Google Scholar 

  19. Tyumentsev, M.A., Stefanova, N.A., Muraleva, N.A., et al., Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats., J. Alzheimers. Dis., 2018, vol. 63, pp. 1075–1088. https://doi.org/10.3233/JAD-180065

    Article  CAS  PubMed  Google Scholar 

  20. Kolosova, N.G., Stefanova, N.A., and Sergeeva, S.V., OXYS rats: A prospective model for evaluation of antioxidant availability in prevention and therapy of accelerated aging and age-related cognitive decline, in Handbook of Cognitive Aging: Causes, Processes and Effects (Aging Issues, Health and Financial Alternatives Series), 2011, ISBN 9781608760282.

  21. Kulikov, A.V., Naumenko, V.S., Voronova, I.P., et al., Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor MRNAs using genomic DNA as an external standard, J. Neurosci. Methods, 2005, vol. 141, p. 97–101. https://doi.org/10.1016/j.jneumeth.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  22. Naumenko, V.S. and Kulikov, A.V., Quantitative assay of 5-HT1A receptor gene expression in the brain, Mol. Biol., 2006, vol. 40, p. 30–36. https://doi.org/10.1134/S0026893306010067/METRICS

    Article  CAS  Google Scholar 

  23. Naumenko, V.S., Osipova, D.V., Kostina, E.V., and Kulikov, A.V., Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain, J. Neurosci. Methods, 2008, vol. 170, pp. 197–203. https://doi.org/10.1016/j.jneumeth.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  24. Gao, L., Zhang, Y., Sterling, K., and Song, W., Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential, Transl. Neurodegener., 2022, vol. 11, pp. 1–34. https://doi.org/10.1186/s40035-022-00279-0

    Article  CAS  Google Scholar 

  25. Rudnitskaya, E.A., Maksimova, K.Y., Muraleva, N.A., et al., Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease, Biogerontology, 2015, vol. 16, pp. 303–316. https://doi.org/10.1007/s10522-014-9547-7

    Article  CAS  PubMed  Google Scholar 

  26. Rudnitskaya, E.A., Kozlova, T.A., Burnyasheva, A.O., et al., Alterations of hippocampal neurogenesis during development of Alzheimer’s disease-like pathology in OXYS rats, Exp. Gerontol., 2019, vol. 115, pp. 32–45. https://doi.org/10.1016/j.exger.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  27. Rudnitskaya, E.A., Kozlova, T.A., Burnyasheva, A.O., et al., Features of postnatal hippocampal development in a rat model of sporadic Alzheimer’s disease, Front. Neurosci., 2020, vol. 14, p. 533. https://doi.org/10.3389/fnins.2020.00533

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stefanova, N.A., Muraleva, N.A., Maksimova, K.Y., et al., An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology, Aging (Albany, New York), 2016, vol. 8, p. 2713–2733. https://doi.org/10.18632/aging.101054

    Article  CAS  Google Scholar 

  29. Wang, Z.-H., Xiang, J., Liu, X., et al., Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-secretase by upregulating C/EBPβ in Alzheimer’s disease, Cell Rep., 2019, vol. 28, pp. 655–669. https://doi.org/10.1016/j.celrep.2019.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hosseini, S., Vázquez-Villegas, P., Rito-Palomares, M., and Martinez-Chapa, S.O., Enzyme-Linked Immunosorbent Assay (ELISA): From A to Z, 2018, Springer, 2018, ISBN 9789811067655.

    Book  Google Scholar 

  31. Lorke, D.E., Lu, G., Cho, E., and Yew, D.T., Serotonin 5-HT2A and 5-HT6 receptors in the prefrontal cortex of Alzheimer and normal aging patients, BMC Neurosci., 2006, vol. 7, рр. 1–8. https://doi.org/10.1186/1471-2202-7-36

    Article  CAS  Google Scholar 

  32. Yuede, C.M., Wallace, C.E., Davis, T.A., et al., Pimavanserin, a 5HT(2A) receptor inverse agonist, rapidly suppresses Aβ production and related pathology in a mouse model of Alzheimer’s disease, J. Neurochem., 2021, vol. 156, рр. 658–673. https://doi.org/10.1111/jnc.15260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Solas, M., Van Dam, D, Janssens, J., et al., 5-HT(7) Receptors in Alzheimer’s disease, Neurochem. Int., 2021, vol. 150. https://doi.org/10.1016/j.neuint.2021.105185

  34. Molobekova, C.A., Kondaurova, E.M., Ilchibaeva, T.V., et al., Amisulpride decreases tau protein hyperphosphorylation in the brain of OXYS rats, Curr. Alzheimer Res., 2023. https://doi.org/10.2174/1567205020666230828144651

  35. Fidalgo, S., Ivanov, D.K., and Wood, S.H., Serotonin: From top to bottom, Biogerontology, 2013, vol. 14, pp. 21–45. https://doi.org/10.1007/s10522-012-9406-3

    Article  CAS  PubMed  Google Scholar 

  36. Madsen, K., Haahr, M.T., Marner, L., et al., Age and sex effects on 5-HT 4 receptors in the human brain: A 11 CSB207145 PET study, J. Cereb. Blood Flow Metab., 2011, vol. 31, p. 1475–1481. https://doi.org/10.1038/jcbfm.2011.11

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rebholz, H., Friedman, E., and Castello, J., Alterations of expression of the serotonin 5-HT4 receptor in brain disorders, Int. J. Mol. Sci., 2018, vol. 19. https://doi.org/10.3390/ijms19113581

  38. Zhang, X.X., Tian, Y., Wang, Z.T., et al., The epidemiology of Alzheimer’s disease modifiable risk factors and prevention, J. Prev. Alzheimer’s Dis., 2021, vol. 8, pp. 313–321. https://doi.org/10.14283/JPAD.2021.15

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Animal management was supported by the funds of Budget Project no. FWNR-2022-0023.

Funding

The work was supported by the Russian Science Foundation (project no. 22-15-00011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tsybko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Animal-related experiments were conducted in accordance with the NIH Guidelines for the care and use of laboratory animals (http://oacu.od.nih.gov/regs/index.htm). Animal protocols were approved by the Ethics Committee of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: 5-HT, serotonin; 5-HT receptor, serotonin subtype 1A receptor; 5-HT receptor, serotonin subtype 2A receptor; 5-HT4 receptor, serotonin type 4 receptor; 5-HT7 receptor, serotonin type 7 receptor; BDNF, brain-derived neurotrophic factor; TrkB, tropomyosin tyrosine kinase receptor B; p75NTR, nerve growth factor receptor; rPol_II (RNA polymerase II), DNA-dependent RNA polymerase 2; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; RT, reverse transcription; PCR, polymerase chain reaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsallum, M., Kaminskaya, Y.P., Tsybko, A.S. et al. Patterns of Expression of the Key Genes of the BDNF System and Serotonin Receptors in the Brain of OXYS Rats in the Development of the Signs of Alzheimer’s Disease. Adv Gerontol 13, 84–93 (2023). https://doi.org/10.1134/S207905702360026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207905702360026X

Keywords:

Navigation