Skip to main content
Log in

Age-Related Menopause and Carbonyl Stress

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The review analyzes the published data of some studies on redox homeostasis in women with age-related physiological menopause. Despite the ambiguity of the presented results on the oxidative modification of lipids, proteins, and carbohydrates, most studies allow us to consider this age period as one of the factors in the development of carbonyl stress, which is an integral part of aging. The presence of hyperglycemia and free-radical pathology are presented as the main causes of the development of carbonyl stress; age-related deficiency of estrogens, taking into account their antioxidant properties, is considered as one of the triggers for the development of this condition, and the glutathione system is defined as one of its main inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Antimonova, O.I., Galkina, O.V., Morozkina, S.N., and Shavva, A.G., Steroid estrogens as antioxidants, Vest. S.-Peterb. Univ., Fiz. Khim., 2012, no. 3, pp. 79–95.

  2. Arushanyan, E.B., Naumov, S.S., and Shchetinin, E.V., Melatonin and neurodegenerative processes in the brain, Exp. Klin. Farmakol., 2019, vol. 82, no. 2, pp. 32–37.

    Google Scholar 

  3. Balabolkin, M.I., Klebanova, E.M., and Kremin-skaya, V.M., Application of ubiquinone (coenzyme Q) in complex therapy for diabetes mellitus and its vascular complications, Sakharnyi Diabet, 2007, vol. 10, no. 4, pp. 37–42.

  4. Bakhidze, E.V., Belyaeva, A.V., Berlev, I.V., et al., Menopausal hormonal therapy and breast cancer, Usp. Gerontol., 2021, vol. 34, no. 2, pp. 277–286.

    CAS  Google Scholar 

  5. Gainetdinova, D.D., Semenov, V.V., Ismagilov, M.F., and Kharitonov, V.S., Clastogenic, aneugenic prooxidant and antioxidant properties of some neurotropic drugs, Exp. Klin. Farmakol., 2006, vol. 69, no. 3, pp. 58–62.

    CAS  Google Scholar 

  6. Grabovetskaya, E.R. and Davydov, V.V., Age-related dynamics of activity of enzymes for aldehyde metabolism in rat heart, Ukr. Biokhim. Zh., 2009, no. 1, pp. 24–27.

  7. Gubskii, Yu.I., Belenichev, I.F., and Levitskii, E.L., Toxicological consequences of oxidative modification of proteins in different pathological states (literature review), Sovr. Probl. Toksikol., 2005, vol. 8, no. 3, p. 20.

    Google Scholar 

  8. Davydov, V.V. and Bozhkov, A.I., Metabolism of endogenous aldehydes: involvement in realization of the damaging effect of oxidative stress and its age-related aspects, Biomed. Khim., 2003, vol. 49, no. 4, pp. 374–387.

    CAS  Google Scholar 

  9. Davydov, V.V. and Bozhkov, A.I., Carbonyl stress as nonspecific factor of pathogenesis (literature and modern research review), Zh. NAMN Ukraïni, 2014, vol. 20, no. 1, pp. 25–34.

    CAS  Google Scholar 

  10. Danilova, L.A., Glycated proteins, Pediatr., 2019, vol. 10, no. 5, pp. 79–86.

    Google Scholar 

  11. Dron’, A.N., Karpova, I.A., and Chernova, A.M., Effects of sex steroids on free radical lipid peroxidation in women, Med. Nauka Obrazov. Urala, 2013, vol. 14, no. 1, pp. 177–180.

    Google Scholar 

  12. Emelyanov, V.V., Glycation, antiglycation and deglycation: role in ageing and geroprotection mechanisms, Usp. Gerontol., 2016, vol. 29, no. 3, pp. 407–416.

    CAS  Google Scholar 

  13. Zanozina, O.V., Borovkov, N.N., and Shcherbatyuk, T.G., Free radical oxidation in type 2 diabetes mellitus: sources of origin, components, pathogenetic mechanisms of toxicity, Sovr. Tekhnol. Med., 2010, no. 3, pp. 104–112.

  14. Il’ina, I.Yu. and Dobrokhotova, Yu.E., Role of oxidative stress in the development of gynecological diseases, Akush. Gin., 2021, vol. 2, pp. 150–156.

    Google Scholar 

  15. Kareva, E.N., Oleinikova, O.M., Panov, V.O., et al., Estrogens and the brain, Vestn. Ros. Akad. Med. Nauk, 2012, vol. 67, no. 2, pp. 48–59.

    Article  Google Scholar 

  16. Kolesnikova, L.I., Bairova, T.A., and Pervushina, O.A., Genes of enzymes of the antioxidant system, Vestn. Ros. Akad. Med. Nauk, 2013, vol. 68, no. 12, pp. 83–88.

    Article  Google Scholar 

  17. Kolesnikova, L.I., Madaeva, I.M., Semenova, N.V., et al., Gender peculiarities of the processes of free radical lipid peroxidation in age-related hormone deficiency states, Vestn. Ros. Akad. Med. Nauk, 2016, vol. 71, no. 3, pp. 248–254.

    CAS  Google Scholar 

  18. Kolesnikova, L.I., Darenskaya, M.A., and Kolesnikov, S.I., Free radical oxidation: view of a pathophysiologist, Byull. Sib. Med., 2017, vol. 16, no. 4, pp. 16–29.

    Article  Google Scholar 

  19. Kosmachevskaya, O.V., Shumaev, K.B., and Topu-nov, A.F., Electrophilic signaling: role of active carbonyl compounds, Usp. Biol. Khim., 2019, no. 59, pp. 419–454.

  20. Lysenko, V.I., Oxidative stress as a nonspecific factor of pathogenesis of organ injuries (literature and modern research review), Meditsina Neotlozhnykh Sostoyaniy, 2020, vol. 16, no. 1, pp. 24–35.

  21. Mal’tseva, A.E. and Fedorova, O.I., Ecophysiological role of photoperiod in the activity of female reproductive system during ontogenesis, Byull. Med. Nauki, 2020, no. 3 (19), pp. 16–20.

  22. Markosyan, A.A., Voprosy vozrastnoi fiziologii (Problems of Ageing Physiology), Moscow: Prosveshchenie, 1974.

  23. Nikonov, V.V., Kursov, S.V., and Beletskii, A.V., Dicarbonyl stress: the hypothesis of cell damage under hypoxia. Trigger mechanism of the development of multiorgan dysfunction, Meditsina Neotlozhnykh Sostoyaniy, 2017, no. 4 (83), pp. 78–84.

  24. Orlov, D.S., Stepovaya, E.A., Ryazantseva, N.V., et al., Protein glutathionylation in P19 tumor cells under in vitro simulation of hypoxia, Mezhdunar. Zh. Exp. Obrazov., 2015, no. 8–1, p. 130.

  25. Petrov, Yu.A., Shelemekh, K.E., and Kupina, A.D., Effect of melatonin on the reproductive system in different periods of woman’s life, Mat’ i Ditya, 2021, no. 2 (85), pp. 26–31.

  26. Razygraev, A.V., Petrosyan, M.A., Timasova, Z.N., et al., Change in the activity of glutathione peroxidase in blood plasma and serum of rats during postnatal development and ageing, Usp. Gerontol., 2019, vol. 32, no. 1–2, pp. 38–44.

    CAS  Google Scholar 

  27. Sarkisyan, V.A., Kochetkova, A.A., Bessonov, V.V., and Glazkova, I.V., Toxicological characteristics of the main products of lipid peroxidation, Vopr. Pitaniya, 2016, vol. 85, no. 6, pp. 80–85.

    CAS  Google Scholar 

  28. Semenova, N.V., Oxidative stress and menopause (literature review), Byull. Vostochno-Sib. Issled. Tsentra Sib. Otd. Ross. Akad. Nauk, 2014, no. 2 (96), pp. 120–125.

  29. Semenova, N.V., Madaeva, I.M., Darenskaya, M.A., and Kolesnikova, L.I., Processes of lipoperoxidation and antioxidant protection system in menopausal women depending on ethnicity, Ekol. Chel., 2019, no. 6, pp. 30–38.

  30. Semenova, N.V., Madaeva, I.M., Brichagina, A.S., and Kolesnikova, L.I., The level of protein oxidation products in blood plasma during insomnia in peri- and postmenopausal women, Acta Biomedica Scientifica (East Siberian Biomed. J.), 2021, vol. 6, no. 1, pp. 69–74.

  31. Khudyakova, N.V., Ivanov, N.V., Pchelin, I.Yu., et al., Diabetic neuropathy: molecular mechanisms of development and possibilities of pathogenetic therapy, Juv. Sci., 2019, no. 4, pp. 8–12.

  32. Chagai, N.B. and Mkrtumyan, A.M., Estrogen metabolism, intravital disorders of methylation processes and breast cancer, Probl. Endokrinol., 2019, vol. 65, no. 3, pp. 161–173.

    Article  Google Scholar 

  33. Yur’eva, E.A., Novikova, N.N., Dlin, V.V., and Vozdvizhenskaya, E.S., Molecular stress and chronic metabolic disorders, Ros. Vestn. Perinatol. Pediatr., 2020, vol. 65, no. 5, pp. 12–22.

    Article  Google Scholar 

  34. Amrita, J., Mahajan, M., Bhanwer, A.J., and Mohan, G., Oxidative stress: an effective prognostic tool for an early detection of cardiovascular disease in menopausal women, Biochem. Res. Int., 2016, vol. 2016, pp. 1–7. ID 6157605.

  35. Baynes, J.W., Role of oxidative stress in development of complications in diabetes, Diabetes, 1991, vol. 40, no. 4, pp. 405–412.

    Article  CAS  Google Scholar 

  36. Bednarek-Tupikowska, G., Antioxidant properties of estrogens, Ginekol. Pol., 2002, vol. 73, no. 1, pp. 61–67.

    Google Scholar 

  37. Bonaccorsi, G., Piva, I., Greco, P., and Cervellati, C., Oxidative stress as a possible pathogenic cofactor of post-menopausal osteoporosis: existing evidence in support of the axis oestrogen deficiency-redox imbalance-bone loss, Indian J. Med. Res., 2018, vol. 147, no. 4, pp. 341–351.

    Article  CAS  Google Scholar 

  38. Cakir, T., Goktas, B., Mutlu, M.F., et al., Advanced oxidation protein products and malondialdehyde—the new biological markers of oxidative stress—are elevated in postmenopausal women, Ginekol. Pol., 2016, vol. 87, no. 5, pp. 321–325.

    Article  Google Scholar 

  39. Cervellati, C., Oxidative stress as a possible pathogenic cofactor of post-menopausal osteoporosis: existing evidence in support of the axis oestrogen deficiency-redox imbalance-bone loss, Indian J. Med. Res., 2018, vol. 147, no. 4, pp. 341–351.

    Article  Google Scholar 

  40. Chainy, G.B.N. and Sahoo, D.K., Hormones and oxidative stress: an overview, Free Radic. Res., 2020, vol. 54, no. 1, pp. 1–26.

    Article  CAS  Google Scholar 

  41. Deponte, M., Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes, Biochim. Biophys. Acta, 2013, vol. 1830, no. 5, pp. 3217–3266.

  42. Doshi, S.B. and Agarwal, A., The role of oxidative stress in menopause, J. Midlife Hlth, 2013, vol. 4, no. 3, pp. 140–146.

    Google Scholar 

  43. Flagg, E.W., Coates, R.J., Jones, D.P., et al., Plasma total glutathione in humans and its association with demographic and health-related factors, Br. J. Nutr., 1993, vol. 70, no. 3, pp. 797–808.

    Article  CAS  Google Scholar 

  44. Gracia, C.R. and Freeman, E.W., Onset of the menopause transition: the earliest signs and symptoms, Obstet. Gynec. Clin. North Amer., 2018, vol. 45, no. 4, pp. 585–597.

    Article  Google Scholar 

  45. Brahmbhatt, Y., Gupta, M., and Hamrahian, S., Hypertension in premenopausal and postmenopausal women, Curr. Hypertens. Rep., 2019, vol. 21, no. 10, p. 74.

    Article  Google Scholar 

  46. Kolesnikova, L.I., Madaeva, I.M., Semenova, N.V., et al., Pathogenic role of melatonin in sleep disorders in menopausal women, Bull. Exp. Biol. Med., 2013, vol. 156, no. 1, pp. 104–106.

    Article  CAS  Google Scholar 

  47. Kolesnikova, L.I., Semenova, N.V., Madaeva, I.M., et al., Antioxidant status in peri- and postmenopausal women, Maturitas, 2015, vol. 81, no. 1, pp. 83–87.

    Article  CAS  Google Scholar 

  48. Kumar, S., Lata, K., Mukhopadhyay, S., and Mukherjee, T.K., Role of estrogen receptors in pro-oxidative and anti-oxidative actions of estrogens: a perspective, Biochim. Biophys. Acta, 2010, vol. 1800, no. 10, pp. 1127–1135.

    Article  CAS  Google Scholar 

  49. Lankin, V.Z., Shumaev, K.B., Tikhaze, A.K., and Kurganov, B.I., Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase, Dokl. Biochem. Biophys., 2017, vol. 475, no. 1, pp. 287–290.

    Article  CAS  Google Scholar 

  50. Mattina, G.F., Van Lieshout, R.J., and Steiner, M., Inflammation, depression and cardiovascular disease in women: the role of the immune system across critical reproductive events, Ther. Adv. Cardiovasc. Dis., 2019, vol. 13, pp. 1–26.

    Article  Google Scholar 

  51. Mauvais-Jarvis, F., Menopause, estrogens, and glucose homeostasis in women, Adv. Exp. Med. Biol., 2017, vol. 1043, pp. 217–225.

    Article  CAS  Google Scholar 

  52. McCarthy, M. and Raval, A.P., The peri-menopause in a woman’s life: a systemic inflammatory phase that enables later neurodegenerative disease, J. Neuroinflam., 2020, vol. 17, no. 1, pp. 1–14.

    Article  Google Scholar 

  53. Meirelles, R.M., Menopause and metabolic syndrome, Arq. Bras. Endocr. Metab., 2014, vol. 58, no. 2, pp. 91–96.

    Article  Google Scholar 

  54. Merhi, Z., Advanced glycation end-products: pathway of potentially significant pathophysiological and therapeutic relevance for metabolic syndrome in menopausal women, J. Clin. Endocr. Metab., 2014, vol. 99, no. 4, pp. 1146–1148.

    Article  CAS  Google Scholar 

  55. Arias-Loza, P.A., Muehlfelder, M., and Pelzer, T., Estrogen and estrogen receptors in cardiovascular oxidative stress, Pflugers Arch., 2013, vol. 465, no. 5, pp. 739–746.

    Article  CAS  Google Scholar 

  56. Moldogazieva, N.T., Mokhosoev, I.M., Mel’nikova, T.I., et al., Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases, Oxid. Med. Cell. Longev., 2019, vol. 2019, pp. 1–14. ID 3085756.

  57. Montoya-Estrada, A., Velázquez-Yescas, K.G., Veruete-Bedolla, D.B., et al., Parameters of oxidative stress in reproductive and postmenopausal Mexican women, Int. J. Environm. Res. Publ. Hlth, 2020, vol. 17, no. 5, pp. 1–11. ID 1492.

  58. Pertynska-Marczewska, M. and Diamanti-Kandarakis, E., Aging ovary and the role for advanced glycation end products, Menopause, 2017, vol. 24, no. 3, pp. 345–351.

    Article  Google Scholar 

  59. Ramírez-Expósito, M.J., Sánchez-López, E., Cueto-Ureña, C., et al., Circulating oxidative stress parameters in pre- and post-menopausal healthy women and in women suffering from breast cancer treated or not with neoadjuvant chemotherapy, Exp. Geront., 2014, vol. 58, pp. 34–42.

    Article  Google Scholar 

  60. Rettberg, J.R., Yao, J., and Brinton, R.D., Estrogen: a master regulator of bioenergetic systems in the brain and body, Front. Neuroendocr., 2014, vol. 35, no. 1, pp. 8–30.

    Article  CAS  Google Scholar 

  61. Newson, L., Menopause and cardiovascular disease, Post. Reprod. Hlth, 2018, vol. 24, no. 1, pp. 44–49.

    Article  Google Scholar 

  62. Saeed, M., Kausar, M.A., Singh, R., et al., The role of glyoxalase in glycation and carbonyl stress induced metabolic disorders, Curr. Protein Pept. Sci., 2020, vol. 21, no. 9, pp. 846–859.

    Article  CAS  Google Scholar 

  63. Sánchez-Rodríguez, M.A., Zacarías-Flores, M., Arronte-Rosales, A., et al., Menopause as risk factor for oxidative stress, Menopause, 2012, vol. 19, no. 3, pp. 361–367.

    Article  Google Scholar 

  64. Sanchez-Rodriguez, M.A., Zacarias-Flores, M., Arronte-Rosales, A., and Mendoza-Nunez, V.M., Association between hot flashes severity and oxidative stress among Mexican postmenopausal women: a cross-sectional study, PLoS One, 2019, vol. 14, no. 9, pp. 1–13. e0214264.

    Article  Google Scholar 

  65. Sharafati-Chaleshtori, R., Shirzad, H., Rafieian-Kopaei, M., and Soltani, A., Melatonin and human mitochondrial diseases, J. Res. Med. Sci., 2017, vol. 22, no. 2, pp. 1–8.

    Google Scholar 

  66. Stensen, M.H., Tanbo, T., Storeng, R., and Fedorcsak, P., Advanced glycation end products and their receptor contribute to ovarian ageing, Hum. Reprod., 2014, vol. 29, no. 1, pp. 125–134.

    Article  CAS  Google Scholar 

  67. Szafarowska, M. and Jerzak, M., Ovarian aging and infertility, Ginekol. Pol., 2013, vol. 84, no. 4, pp. 298–304.

    Article  Google Scholar 

  68. Victorino, V.J., Panis, C., Campos, F.C., et al., Decreased oxidant profile and increased antioxidant capacity in naturally postmenopausal women, Age (Dordr), 2013, vol. 35, no. 4, pp. 1411–1421.

    Article  CAS  Google Scholar 

  69. Wang, L., Ahn, Y.J., and Asmis, R., Sexual dimorphism in glutathione metabolism and glutathione-dependent responses, Redox Biol., 2020, vol. 31, p. 101410.

    Article  CAS  Google Scholar 

  70. Yamagishi, S., Fukami, K., and Matsui, T., Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: a novel marker of vascular complications in high-risk patients for cardiovascular disease, Int. J. Cardiol., 2015, vol. 15, no. 185, pp. 263–268.

  71. Zovari, F., Parsian, H., Bijani, A., et al., Evaluation of salivary and serum total antioxidant capacity and lipid peroxidation in postmenopausal women, Int. J. Dent., 2020, vol. 17, no. 2020, pp. 1–5. ID 8860467.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Semenova.

Ethics declarations

Conflict of interest. We declare that we have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving humans as subjects.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brichagina, A.S., Semenova, N.V. & Kolesnikova, L.I. Age-Related Menopause and Carbonyl Stress. Adv Gerontol 12, 456–462 (2022). https://doi.org/10.1134/S2079057022040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057022040051

Keywords:

Navigation