Skip to main content
Log in

Sirtuins Expression in the Hippocampus and Buccal Epithelium of Elderly and Senile Individuals with Alzheimer’s Disease

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Sirtuins (SIRT) are a class of NAD-dependent proteins with deacetylase activity that are involved in the regulation of transcription, metabolic pathways, and cell aging via the deacetylation of histone and nonhistone targets. It was hypothesized that sirtuins play important role in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease (AD). An age-related decrease in sirtuin expression leads to oxidative stress, which can cause neurodegeneration. This article examines the age-related dynamics of SIRT1, 3, 5, and 6 expression in patients with AD and in healthy individuals with immunohistochemistry and immunocytochemistry methods via immunofluorescent confocal microscopy. In elderly and senile health individuals, the SIRT1, 3, 5, and 6 expression in the hippocampus and buccal epithelium did not differ significantly. In AD patients, the SIRT1, 3, 5, and 6 expression in the hippocampus and buccal epithelium decrease by 1.5–5 times as compared with healthy elderly and senile individuals. The SIRT5 expression in the hippocampus and buccal epithelium does not depend on the age or AD diagnosis. Thus, the SIRT 1, 3, and 6 expression in the buccal epithelium can be a marker for intravital, noninvasive AD diagnosis in elderly and senile individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Avtandilov, G.G., Meditsinskaya morfometriya: Rukovodstvo (Medical Morphometry: A Handbook), Moscow: Meditsina, 1990.

  2. Cao, W., Dou, Y., and Li, A., Resveratrol boosts cognitive function by targeting SIRT1, Neurochem. Res., 2018, vol. 43, no. 9, pp. 1705–1713. https://doi.org/10.1007/s11064-018-2586-8

    Article  CAS  PubMed  Google Scholar 

  3. Chen, B., Zang, W., Wang, J., et al., The chemical biology of sirtuins, Chem. Soc. Rev., 2015, vol. 44, pp. 5246–5264.

    Article  CAS  PubMed  Google Scholar 

  4. Fang, C., Gu, L., Smerin, D., et al., The interrelation between reactive oxygen species and autophagy in neurological disorders, Oxid. Med. Cell. Longevity, 2017, vol. 2017, art. ID 8495160. https://doi.org/10.1155/2017/8495160

    Article  CAS  Google Scholar 

  5. Gomes, B.A.Q., Silva, J.P.B., Romeiro, C.F.R., et al., Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1, Oxid. Med. Cell. Longevity, 2018, vol. 2018, art. ID 8 152 373. https://doi.org/10.1155/2018/8152373

    Article  CAS  Google Scholar 

  6. Hadar, A., Milanesi, E., Walczak, M., et al., SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease, Sci. Rep., 2018, vol. 8, no. 1, p. 8465. https://doi.org/10.1038/s41598-018-26547-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jęśko, H., Wencel, P., Strosznajder, R.P., and Strosznajder, J.B., Sirtuins and their roles in brain aging and neurodegenerative disorders, Neurochem. Res., 2017, vol. 42, no. 3, pp. 876– 890. https://doi.org/10.1007/s11064-016-2110-y

  8. Julien, C., Tremblay, C., Emond, V., et al., Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease, J. Neuropathol. Exp. Neurol., 2009, vol. 68, no. 1, pp. 48–58. https://doi.org/10.1097/NEN.0b013e3181922348

    Article  CAS  PubMed  Google Scholar 

  9. Kaeberlein, M., McVey, M., and Guarente, L., The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms, Genes Dev., 1999, vol. 13, pp. 2570–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaluski, S., Portillo, M., Besnard, A., et al., Neuroprotective functions for the histone deacetylase SIRT6, Cell Rep., 2017, vol. 18, no. 13, pp. 3052–3062. https://doi.org/10.1016/j.celrep.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koo, J.H., Kang, E.B., Oh, Y.S., et al., Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease, Exp. Neurol., 2017, vol. 288, pp. 142–152. https://doi.org/10.1016/j.expneurol.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J., Kim, Y., Liu, T., et al., SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease, Aging Cell, 2018, vol. 17, no. 1, p. e12679. https://doi.org/10.1111/acel.12679

    Article  CAS  Google Scholar 

  13. Marwarha, G., Raza, S., Meiers, C., and Ghribi, O., Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway, Biochim. Biophys. Acta, Mol. Basis Dis., 2014, vol. 1842, no. 9, pp. 1587–1595. https://doi.org/10.1016/j.bbadis.2014.05.015

    Article  CAS  Google Scholar 

  14. Morris-Blanco, K.C., Cohan, C.H., Neumann, J.T., et al., Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex, J. Cereb. Blood Flow Metab., 2014, vol. 34, no. 6, pp. 1024–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palacino, J.J., Sagi, D., Goldberg, M.S., et al., Mitochondrial dysfunction and oxidative damage in parkin-deficient mice, J. Biol. Chem., 2004, vol. 279, no. 18, pp. 18614–18622.

    Article  CAS  PubMed  Google Scholar 

  16. Rizzi, L. and Roriz-Cruz, M., Sirtuin 1 and Alzheimer’s disease: an up-to-date review, Neuropeptides, 2018, vol. 71, pp. 54–60. https://doi.org/10.1016/j.npep.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  17. Salminen, A., Kaarniranta, K., and Kauppinen, A., Crosstalk between oxidative stress and SIRT1: impact on the aging process, Int. J. Mol. Sci., 2013, vol. 14, no. 2, pp. 3834–3859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salvatori, I., Valle, C., Ferri, A., and Carrì, M.T., SIRT3 and mitochondrial metabolism in neurodegenerative diseases, Neurochem. Int., 2017, vol. 109, pp. 184–192. https://doi.org/10.1016/j.neuint.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  19. Singh, C.K., Chhabra, G., Ndiaye, M.A., et al., The role of sirtuins in antioxidant and redox signaling, Antioxid. Redox Signaling, 2018, vol. 28, no. 8, pp. 643–661. https://doi.org/10.1089/ars.2017.7290

    Article  CAS  Google Scholar 

  20. Tönnies, E. and Trushina, E., Oxidative stress, synaptic dysfunction, and Alzheimer’s disease, J. Alzheimer’s Dis., 2017, vol. 57, no. 4, pp. 1105–1121. https://doi.org/10.3233/JAD-161088

  21. Xu, S., Bai, P., and Jin, Z.G., Sirtuins in cardiovascular health and diseases, Trends Endocrinol. Metab., 2016, vol. 27, no. 10, pp. 677–678. https://doi.org/10.1016/j.tem.2016.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yin, J., Li, S., Nielsen, M., et al., Sirtuin 3 attenuates amyloid-β induced neuronal hypometabolism, Aging (New York), 2018, vol. 10, no. 10, pp. 2874–2883. https://doi.org/10.18632/aging.101592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-54-06012 Az_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Pukhalskaia.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Kashevarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukhalskaia, A.E., Linkova, N.S., Diatlova, A.S. et al. Sirtuins Expression in the Hippocampus and Buccal Epithelium of Elderly and Senile Individuals with Alzheimer’s Disease. Adv Gerontol 11, 126–131 (2021). https://doi.org/10.1134/S2079057021020120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057021020120

Keywords:

Navigation