Cognitive Aging and Cognitive Reserve: Points of Contact

Abstract

The high risk of cognitive disorders in elderly and senile people necessitates the search, on the one hand, for their causes, and on the other, for the possibility of their prevention. Thus, the concept of cognitive reserve, which implies a set of quantitative parameters of the brain and its ability to maintain high functional activity during aging and against the background of the age-related brain pathology, has become widespread in recent years. The material presented in the article is based on a review of the scientific literature and highlights two main points concerning the possibility of the preservation of the cognitive reserve: gender and educational factors. The article points to the different potential of women and men associated with the structural and functional features of the central nervous system in representatives of different sexes and the special role of the educational process supported throughout life. The authors’ position on the need to separate the concepts of education and erudition, i.e., the level of general culture, and to create a convenient tool for the determination of the latter is indicated. This, in turn, would assist in the development of a cognitive reserve model aimed at the prevention of the transformation of physiological cognitive aging into a pathological one.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1

    Velichkovskii, B.B., Performance capabilities of cognitive training as a method of correcting age-related decline in cognitive control, Eksp. Psikhol., 2009, no. 3, pp. 78–91.

  2. 2

    Vodop’yanova, N.E. and Starchenkova, E.S., Sindrom vygoraniya: diagnostika i profilaktika (Burnout Syndrome: Diagnosis and Prevention), St. Petersburg: Piter, 2008, 2nd ed.

  3. 3

    Voronin, A.N. and Goryunova, N.B., Kognitivnyi resurs: struktura, dinamika, razvitie (Cognitive Reserves: Structure, Dynamics, and Development), Moscow: Inst. Psikhol., Ross. Akad. Nauk, 2016.

  4. 4

    Gusev, E.I. and Bogolepova, A.N., Kognitivnye narusheniya pri tserebrovaskulyarnykh zabolevaniyakh (Cerebrovascular Diseases Associated with Cognitive Impairment), Moscow: MEDpressinform, 2013.

  5. 5

    Kamchatnov, P.R. and Evzel’man, M.A., Memantal: possibility for correction of cognitive disorders, Trudnyi Patsient, 2014, vol. 12, no. 6, pp. 53–56.

    Google Scholar 

  6. 6

    Myakotnykh, V.S. and Ostapchuk, E.S., Importance of sexual disorders for clinical characteristics and outcomes of cerebral stroke in the elderly people, Klin. Gerontol., 2019, vol. 25, nos. 9–10, pp. 26–32. https://doi.org/10.26347/1607-2499201909-10026-032

  7. 7

    Myakotnykh, V.S., Sidenkova, A.P., Borovkova, T.A., and Berezina, D.A., Medical, psychological, social, and gender aspects of aging in modern Russia, Adv. Gerontol., 2014, vol. 4, no. 4, pp. 305–311.

    Article  Google Scholar 

  8. 8

    Ostapchuk, E.S. and Myakotnykh, V.S., Sex-related characteristics of the central nervous system in normal state and in pathology, Nevrol. Sib., 2018, no. 2 (4), pp. 55–68.

  9. 9

    Polishchuk, Yu.I., Topical issues of critical gerontopsychiatry, Sots. Klin. Psikhiatr., 2006, vol. 16, no. 3, pp. 12–17.

    Google Scholar 

  10. 10

    Slobodin, T.A. and Goreva, A.V., Cognitive reserve: causes of reduction and defense mechanis, Mezhdunar. Nevrol. Zh., 2012, no. 3 (49), pp. 161–165.

  11. 11

    Strizhitskaya, O.Yu., Cognitive reserve as a psychological and psychophysiological resource during aging, Vestn. S.-Peterb. Gos. Univ., Psikhol., Pedagog., 2016, no. 2 (16), pp. 79–87.

  12. 12

    Aben, B., Stapert, S., and Blokland, A., About the distinction between working memory and short-term memory, Front. Psychol., 2012, vol. 3, art. ID 301. https://doi.org/10.3389/fpsyg.2012.00301

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Arenaza-Urquijo, E.M., Landeau, B., La Joie, R., et al., Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders, NeuroImage, 2013, vol. 83, pp. 450–457. https://doi.org/10.1016/j.Neuroimage.2013.06.053

  14. 14

    Barulli, D. and Stern, Y., Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve, Trends Cognit. Sci., 2013, vol. 17, no. 10, pp. 502–509. https://doi.org/10.1016/j.tics.2013.08.012

    Article  Google Scholar 

  15. 15

    Bennett, D.A., Arnold, S.E., Valenzuela, M.J., et al., Cognitive and social lifestyle: links with neuropathology and cognition in late life, Acta Neuropathol., 2014, vol. 127, no. 1, pp. 137–150. https://doi.org/10.1007/s00401-013-1226-2

    Article  PubMed  Google Scholar 

  16. 16

    Bhat, A., Unraveling the mystery of cognitive reserve, J. Biosci., 2015, vol. 40, no. 2, pp. 205–208. https://doi.org/10.1007/s12038-015-9511-y

    Article  PubMed  Google Scholar 

  17. 17

    Budde, H. and Wegner, M., The Exercise Effect on Mental Health: Neurobiological Mechanisms, Boca Ration, FL: CRC Press, 2018, 1st ed.

    Google Scholar 

  18. 18

    Cadar, D., Robitaille, A., Clouston, S., et al., An international evaluation of cognitive reserve and memory changes in early old age in 10 European countries, Neuroepidemiology, 2017, vol. 48, nos. 1–2, pp. 9–20. https://doi.org/10.1159/000452276

  19. 19

    Caselli, R., Dueck, A., Locke, D., et al., Sex-based memory advantages and cognitive aging: a challenge to the cognitive reserve construct?, J. Int. Neuropsychol. Soc., 2015, vol. 21, no. 2, pp. 95–104. https://doi.org/10.1017/S1355617715000016

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Cheng, S.-T., Cognitive reserve and the prevention of dementia: the role of physical and cognitive activities, Curr. Psychiatry Rep., 2016, vol. 18, no. 9, pp. 1–12. https://doi.org/10.1007/s11920-016-0721-2

    Article  Google Scholar 

  21. 21

    Clare, L., Wu, Y.-T., Teale, J.C., et al., Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: a cross-sectional study, PLoS Med., 2017, vol. 14, no. 3, pp. 1–14. https://doi.org/10.1371/journal.pmed.1002259

    Article  Google Scholar 

  22. 22

    Crowe, M., Clay, O.J., Martin, R.C., et al., Indicators of childhood quality of education in relation to cognitive function in older adulthood, J. Gerontol., Ser. A, 2013, vol. 68, no. 2, pp. 198–204. https://doi.org/10.1093/gerona/gls122

  23. 23

    De Lacy, N., McCauley, E., Kutz, J.N., and Calhoun, V.D., Sex-related differences in intrinsic brain dynamism and their neurocognitive correlates, NeuroImage, 2019, vol. 202, art. ID 116116. https://doi.org/10.1016/j.neuroimage.2019.116116

    Article  PubMed  Google Scholar 

  24. 24

    Eskes, A., Changing Brains: Applying Brain Plasticity to Advance and Recover Human Ability: Progress in Brain Research, Amsterdam: Elsevier, 2013.

    Google Scholar 

  25. 25

    Hilger, K., Ekman, M., Fiebach, C.J., and Basten, U., Efficient hubs in the intelligent brain: nodal efficiency of hub regions in the salience network is associated with general intelligence, Intelligence, 2017, vol. 60, pp. 10–25. https://doi.org/10.1038/s41598-017-15795-7

    CAS  Article  Google Scholar 

  26. 26

    Hill, A.C., Laird, A.R., and Robinson, J.L., Gender differences in working memory networks: A Brain Map meta-analysis, J. Biol. Psychol., 2014, vol. 102, pp. 18–29. https://doi.org/10.1016/J.biopsycho.2014.06.008

    Article  Google Scholar 

  27. 27

    Ho, K.C., Roessmann, U., Straumfjord, J.V., and Monroe, G., Analysis of brain weight: I. Adult brain weight in relation to sex, race, and age, Arch. Pathol. Lab. Med., 1980, vol. 104, no. 12, pp. 635–639.

    CAS  PubMed  Google Scholar 

  28. 28

    Ingalhalikar, M., Smith, A., Parker, D., et al., Sex differences in the structural connectome of the human brain, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 2, pp. 823–828. https://doi.org/10.1073/pnas.1316909110

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Kakimoto, A., Ito, S., Okada, H., et al., Age-related sex-specific changes in brain metabolism and morphology, J. Nucl. Med., 2016, vol. 57, no. 2, pp. 221–225. https://doi.org/10.2967/jnumed.115.166439

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Laws, K.R., Irvine, K., and Gale, T.M., Sex differences in cognitive impairment in Alzheimer’s disease, World J. Psychiatry, 2016, vol. 6, no. 1, pp. 54–65. https://doi.org/10.5498/wjp.v6.i1.54

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Malpetti, M., Ballarini, T., Presotto, L., et al., Gender differences in healthy aging and Alzheimer’s dementia: a 18 F-FDG-PET study of brain and cognitive reserve, Hum. Brain Mapp., 2017, vol. 38, no. 8, pp. 4212–4227. https://doi.org/10.1002/hbm.23659

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Medaglia, J.D., Pasqualetti, F., Hamilton, R.H., et al., Brain and cognitive reserve: translation via network control theory, Neurosci. Biobehav. Rev., 2017, vol. 75, pp. 53–64. https://doi.org/10.1016/j.neubiorev.2017.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Mortimer, J.A., Adler Intellect: Mind over Matter, London: Macmillan, 1990.

    Google Scholar 

  34. 34

    Mortimer, J.A., Do psychosocial risk factors contribute to Alzheimer’s disease?, in Etiology of Dementia of Alzheimer’s Type, Henderson, A.S. and Henderson, J.H., Eds., New York: Wiley, 1988.

    Google Scholar 

  35. 35

    Perquin, M., Diederich, N., Pastore, J., et al., Prevalence of dementia and cognitive complaints in the context of high cognitive reserve: a population-based study, PLoS One, 2015, vol. 10, no. 9, p. e0138818. https://doi.org/10.1371/journal.pone.0138818

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Phillips, C., Lifestyle modulators of neuroplasticity: How physical activity, mental engagement, and diet promote cognitive health during aging, Neural. Plast., 2017, vol. 2017, art. ID 3589271. https://doi.org/10.1155/2017/3589271

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Pliatsikas, C., Verissimo, J., Babcock, L., et al., Working memory in older adults declines with age, but is modulated by sex and education, Quart. J. Exp. Psychol., 2019, vol. 72, no. 6, pp. 1308–1327. https://doi.org/10.1177/1747021818791994

    Article  Google Scholar 

  38. 38

    Prince, M., Albanese, E., Guerchet, M., and Prina, M., World Alzheimer Report 2014: Dementia and Risk Reduction. An Analysis of Protective and Modifiable Factors, London: Alzheimer’s Dis. Int., 2014.

    Google Scholar 

  39. 39

    Prince, M., Ali, G., Guerchet, M., et al., Recent global trends in the prevalence and incidence of dementia, and survival with dementia, Alzheimer’s Res. Ther., 2016, vol. 8, no. 23. https://doi.org/10.1186/s13195-016-0188-8

  40. 40

    Satterthwaite, T.D., Wolf, D.H., Roalf, D.R., et al., Linked sex differences in cognition and functional connectivity in youth, Cereb. Cortex, 2015, vol. 25, no. 9, pp. 2383–2394. https://doi.org/10.1093/cercor/bhu036

    Article  PubMed  Google Scholar 

  41. 41

    Scarmeas, N., Zarahn, E., Anderson, K., et al., Association of life activities with cerebral blood flow in Alzheimer disease: implications for the cognitive reserve hypothesis, Arch. Neurol., 2003, vol. 60, no. 3, pp. 359–365. https://doi.org/10.1001/archneur.60.3.359

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Steffener, J. and Stern, Y., Exploring the neural basis of cognitive reserve in aging, Biochim. Biophys. Acta, Mol. Basis Dis., 2012, vol. 1822, no. 3, pp. 467–473. https://doi.org/10.1016/j.bbadis.2011.09.012

    CAS  Article  Google Scholar 

  43. 43

    Stern, Y., Cognitive reserve, J. Neuropsychol., 2009, vol. 47, no. 10, pp. 2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004

    Article  Google Scholar 

  44. 44

    Teeuw, J., Brouwer, R.M., Guimarães, J.P., et al., Genetic and environmental influences on functional connectivity within and between canonical cortical resting-state networks throughout adolescent development in boys and girls, NeuroImage, 2019, vol. 202, art. ID 116073. https://doi.org/10.1016/j.neuroimage.2019.116073

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Tucker, A.M. and Stern, Y., Cognitive reserve in aging, Curr. Alzheimer’s Res., 2011, vol. 8, no. 4, pp. 354–360. https://doi.org/10.2174/156720511795745320

    CAS  Article  Google Scholar 

  46. 46

    Valenzuela, M., Brayne, C., Sachdev, P., and Wilcock, G., Cognitive lifestyle and long-term risk of dementia and survival after diagnosis in a multicenter population-based cohort, Am. J. Epidemiol., 2011, vol. 173, no. 9, pp. 1004–1012. https://doi.org/10.1093/aje/kwq476

    Article  PubMed  Google Scholar 

  47. 47

    Witelson, S.F., Glezer, I.I., and Kigar, D.L., Women have greater density of neurons in posterior temporal cortex, J. Neurosci., 1995, vol. 15, pp. 3418–3428. https://doi.org/10.1523/JNEUROSCI.15-05-03418.1995

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Yagi, S. and Galea, L.A.M., Sex differences in hippocampal cognition and neurogenesis, Neuropsychopharmacology, 2019, vol. 44, pp. 200–213. https://doi.org/10.1038/s41386-018-0208-4

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Myakotnykh.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Myakotnykh, V.S., Sidenkova, A.P., Ostapchuk, E.S. et al. Cognitive Aging and Cognitive Reserve: Points of Contact. Adv Gerontol 10, 356–362 (2020). https://doi.org/10.1134/S2079057020040165

Download citation

Keywords:

  • aging
  • cognitive reserve
  • gender differences
  • protective factors
  • education