Skip to main content
Log in

The Use of Geroprotective Agents (mTOR Inhibitors) in the Treatment of Cancer Patients

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The review discusses experimental and clinical data from recent decades on the use of geroprotective agents of the mTOR inhibitor group for the main and accompanying treatment of cancer patients. The mTOR protein kinase is an interesting therapeutic target for the treatment of multiple cancers with both mTOR inhibitors themselves (rapamycin and its derivatives) and in combination with inhibitors of other pathways (e.g., metformin). mTOR inhibitors, which are not classical cytostatic agents and do not possess carcinogenic activity, show great promise as independent antitumor agents and in combination with conventional chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Andre, F., O’Regan, R., Ozguroglu, M., et al., Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomized, double-blind, placebocontrolled phase 3 trial, Lancet Oncol., 2014, vol. 15, pp. 580–591.

    CAS  PubMed  Google Scholar 

  2. Anisimov, V.N., Metformin for prevention and treatment of colon cancer: a reappraisal of experimental and clinical data, Curr. Drug Targets, 2016, vol. 17, no. 4, pp. 439–446.

    CAS  PubMed  Google Scholar 

  3. Anisimov, V.N., Berstein, L.M., Egormin, P.A., et al., Metformin slows down aging and extends life span of female SHR mice, Cell Cycle, 2008, vol. 7, no. 17, pp. 2769–2773.

    CAS  PubMed  Google Scholar 

  4. Anisimov, V.N., Egormin, P.A., Bershtein, L.M., et al., Metformin decelerates aging and development of mammary tumors in HER-2/neu transgenic mice, Bull. Exp. Biol. Med., 2005, vol. 139, no. 6, pp. 721–723.

    CAS  PubMed  Google Scholar 

  5. Anisimov, V.N., Zabezhinski, M.A., Popovich, I.G., et al., Rapamycin extends maximal lifespan in cancer-prone mice, Am. J. Pathol., 2010, vol. 176, no. 5, pp. 2092–2097.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Anisimov, V.N., Zabezhinski, M.A., Popovich, I.G., et al., Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice, Cell Cycle, 2011, vol. 10, no. 24, pp. 4230–4236.

    CAS  PubMed  Google Scholar 

  7. Apontes, P., Leontieva, O.V., Demidenko, Z.N., et al., Exploring long-term protection of normal human fibroblasts and epithelial cells from chemotherapy in cell culture, Oncotarget, 2011, vol. 2, pp. 222–233.

    PubMed  PubMed Central  Google Scholar 

  8. Arriola Apelo, S.I. and Lamming, D.W., Rapamycin: an inhibiTOR of aging emerges from the soil of Easter Island, J. Gerontol., A, 2016, vol. 71, no. 7, pp. 841–849.

  9. Bent, E.H., Gilbert, L.A., and Hemann, M.T., A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses, Genes Dev., 2016, vol. 30, no. 16, pp. 1811–1821.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Berstein, L.M., Vasilyev, D.A., Iyevleva, A.G., et al., Potential and real ‘antineoplastic’ and metabolic effect of metformin in diabetic and nondiabetic postmenopausal females, Future Oncol., 2015, vol. 11, no. 5, pp. 759–770.

    CAS  PubMed  Google Scholar 

  11. Blagosklonny, M.V., Answering the ultimate question “What is the proximal cause of aging?,” Aging (Albany, NY), 2012, vol. 4, no. 12, pp. 861–877.

    Google Scholar 

  12. Blagosklonny, M.V., Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging, Aging (Albany, NY), 2012, vol. 4, no. 3, pp. 159–165.

    CAS  Google Scholar 

  13. Blagosklonny, M.V. and Darzynkiewicz, Z., Cyclotherapy: protection of normal cells and unshielding of cancer cells, Cell Cycle, 2002, vol. 1, no. 6, pp. 375–382.

    CAS  PubMed  Google Scholar 

  14. Campone, M., Levy, V., Bourbouloux, E., et al., Safety and pharmacokinetics of paclitaxel and the oral mTOR inhibitor everolimus in advanced solid tumors, Br. J. Cancer, 2009, vol. 100, no. 2, pp. 315–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chatterjee, A., Mukhopadhyay, S., Tung, K., et al., Rapamycin-induced G1 cell cycle arrest employs both TGF-β and Rb pathways, Cancer Lett., 2015, vol. 360, no. 2, pp. 134–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cifarelli, V., Lashinger, L.M., Devlin, K.L., et al., Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct microRNA-regulated mechanisms, Diabetes, 2015, vol. 64, no. 5, pp. 1632–1642.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Currie, C.J., Poole, C.D., and Gale, E.A., The influence of glucose-lowering therapies on cancer risk in type 2 diabetes, Diabetologia, 2009, vol. 52, no. 9, pp. 1766–1777.

    CAS  PubMed  Google Scholar 

  18. Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., et al., Metformin and reduced risk of cancer in diabetic patients, Br. Med. J., 2005, vol. 330, no. 7503, pp. 1304–1305.

    Google Scholar 

  19. Fiebrich, H.B., Siemerink, E.J., Brouwers, A.H., et al., Everolimus induces rapid plasma glucose normalization in insulinoma patients by effects on tumor as well as normal tissues, Oncologist, 2011, vol. 16, pp. 783–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Granville, C.A., Warfel, N., Tsurutani, J., et al., Identification of a highly effective rapamycin schedule that markedly reduces the size, multiplicity and phenotypic progression of tobacco carcinogen-induced murine lung tumors, Clin. Cancer Res., 2007, vol. 13, no. 7, pp. 2281–2289.

    CAS  PubMed  Google Scholar 

  21. Grozinsky-Glasberg, S. and Shimon, I., The potential role of mTOR inhibitors in the treatment of endocrine tumors, J. Endocrinol. Invest., 2010, vol. 33, no. 4, pp. 276–281.

    CAS  PubMed  Google Scholar 

  22. Guertin, D.A. and Sabatini, D.M., Defining the role of mTOR in cancer, Cancer Cell, 2007, vol. 12, pp. 9–22.

    CAS  PubMed  Google Scholar 

  23. Hanly, E.K., Bednarczyk, R.B., Tuli, N.Y., et al., mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib, Oncotarget, 2015, vol. 6, no. 37, pp. 39 702–39 713.

    Google Scholar 

  24. Hare, S.H. and Harvey, A.J., mTOR function and therapeutic targeting in breast cancer, Am. J. Cancer Res., 2017, vol. 7, no. 3, pp. 383–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Harrison, D.E., Strong, R., Sharp, Z.D., et al., Rapamycin fed late in life extends lifespan in genetically heterogeneous mice, Nature, 2009, vol. 460, no. 7253, pp. 392–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hau, A.M., Nakasaki, M., Nakashima, K., et al., Differential mTOR pathway profiles in bladder cancer cell line subtypes to predict sensitivity to mTOR inhibition, Urol. Oncol., 2017, vol. 17, pp. 30 134–30 135.

    Google Scholar 

  27. Hay, N. and Sonenberg, N., Upstream and downstream of mTOR, Genes Dev., 2004, vol. 18, no. 16, pp. 1926–1945.

    CAS  PubMed  Google Scholar 

  28. Hobday, T.J., Qin, R., Reidy-Lagunes, D., et al., Multicenter phase II trial of temsirolimus and bevacizumab in pancreatic neuroendocrine tumors, J. Clin. Oncol., 2015, vol. 33, pp. 1551–1556.

    CAS  PubMed  Google Scholar 

  29. Hoda, M.A., Mohamed, A., Ghanim, B., et al., Temsirolimus inhibits malignant pleural mesothelioma growth in vitro and in vivo: synergism with chemotherapy, J. Thorac. Oncol., 2011, vol. 6, no. 5, pp. 852–863.

    PubMed  Google Scholar 

  30. Hurvitz, S.A., Dalenc, F., Campone, M., et al., A Phase 2 study of everolimus combined with trastuzumab and paclitaxel in patients with HER2-overex-pressing advanced breast cancer that progressed during prior trastuzumab and taxane therapy, Breast Cancer Res. Treat., 2013, vol. 141, pp. 437–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Iorio, A.L., Da Ros, M., Pisano, C., et al., Combined treatment with doxorubicin and rapamycin is effective against in vitro and in vivo models of human glioblastoma, J. Clin. Med., 2019, vol. 8, no. 3, p. 331.

    CAS  PubMed Central  Google Scholar 

  32. Johnston, O., Rose, C.L., Webster, A.C., and Gill, J.S., Sirolimus is associated with new-onset diabetes in kidney transplant recipients, J. Am. Soc. Nephrol., 2008, vol. 19, pp. 1411–1418.

    PubMed  PubMed Central  Google Scholar 

  33. Kangwan, N., Park, J.M., Kim, E.H., and Hahm, K.B., Chemoquiescence for ideal cancer treatment and prevention: where are we now?, J. Cancer Prev., 2014, vol. 19, no. 2, pp. 89–96.

    PubMed  PubMed Central  Google Scholar 

  34. Kranz, D. and Dobbelstein, M., A killer promoting survival-p53 as a selective means to avoid side effects of chemotherapy, Cell Cycle, 2012, vol. 11, no. 11, pp. 2053–2054.

    CAS  PubMed  Google Scholar 

  35. Lee, J.S., Vo, T.T., and Fruman, D.A., Targeting mTOR for the treatment of B cell malignancies, Br. J. Clin. Pharmacol., 2016, vol. 82, no. 5, pp. 1213–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Leontieva, O.V., Paszkiewicz, G.M., and Blagosklonny, M.V., Weekly administration of rapamycin improves survival and biomarkers in obese male mice on high-fat diet, Aging Cell, 2014, vol. 13, no. 4, pp. 616–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ling, S., Feng, T., Ke, Q., et al., Metformin inhibits proliferation and enhances chemosensitivity of intrahepatic cholangiocarcinoma cell lines, Oncol. Rep., 2014, vol. 31, no. 6, pp. 2611–2618.

    CAS  PubMed  Google Scholar 

  38. Liu, B., Fan, Z., Edgerton, S.M., et al., Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interaction, Cell Cycle, 2011, vol. 10, no. 17, pp. 2959–2966.

    CAS  PubMed  Google Scholar 

  39. Mabuchi, S., Hisamatsu, T., and Kimura, T., Targeting mTOR signaling pathway in ovarian cancer, Curr. Med. Chem., 2011, vol. 18, no. 19, pp. 2960–2968.

    CAS  PubMed  Google Scholar 

  40. Mondesire, W.H., Jian, W., Zhang, H., et al., Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells, Clin. Cancer Res., 2004, vol. 10, no. 20, pp. 7031–7042.

    CAS  PubMed  Google Scholar 

  41. Motzer, R.J., Escudier, B., Oudard, S., et al., Efficacy of everolimus in advanced renal cell carcinoma: a double blind, randomised, placebo-controlled phase III trial, Lancet, 2008, vol. 372, pp. 449–456.

    CAS  PubMed  Google Scholar 

  42. Onoda, N., Nakamura, M., Aomatsu, N., et al., Significant cytostatic effect of everolimus on a gefitinib-resistant anaplastic thyroid cancer cell line harboring PI3KCA gene mutation, Mol. Clin. Oncol., 2015, vol. 3, no. 3, pp. 522–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Piguet, A.C., Semela, D., Keogh, A., et al., Inhibition of mTOR in combination with doxorubicin in an experimental model of hepatocellular carcinoma, J. Hepatol., 2008, vol. 49, pp. 78–87.

    CAS  PubMed  Google Scholar 

  44. Popovich, I.G., Anisimov, V.N., Zabezhinski, M.A., et al., Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin, Cancer Biol. Ther., 2014, vol. 15, no. 5, pp. 586–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rao, B., Lain, S., and Thompson, A.M., p53-Based cyclotherapy: exploiting the ‘guardian of the genome’ to protect normal cells from cytotoxic therapy, Br. J. Cancer, 2013, vol. 109, pp. 2954–2958.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sabatini, D.M., mTOR: from growth signal integration to cancer, diabetes and ageing, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, pp. 21–35.

    PubMed  Google Scholar 

  47. Saha, A., Blando, J., Tremmel, L., and DiGiovanni, J., Effect of metformin, rapamycin, and their combination on growth and progression of prostate tumors in HiMyc mice, Cancer Prev. Res., 2015, vol. 8, no. 7, pp. 597–606.

    CAS  Google Scholar 

  48. Shaw, R.J., Lamia, K.A., Vasquez, D., et al., The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin, Science, 2005, vol. 310, no. 5754, pp. 1642–1646.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shen, Ch., Peng, Ch., Shen, B., et al., Sirolimus and metformin synergistically inhibit hepatocellular carcinoma cell proliferation and improve long-term survival in patients with HCC related to hepatitis B virus induced cirrhosis after liver transplantation, Oncotarget, 2016, vol. 7, no. 38, pp. 62 647–62 656.

    Google Scholar 

  50. Shimazu, K., Tada, Y., Morinaga, T., et al., Metformin produces growth inhibitory effects in combination with nutlin-3a on malignant mesothelioma through a cross-talk between mTOR and p53 pathways, BMC Cancer, 2017, vol. 17, no. 1, p. 309.

    PubMed  PubMed Central  Google Scholar 

  51. Song, Y., Xue, H., Liu, T.T., et al., Rapamycin plays a neuroprotective effect after spinal cord injury via anti-inflammatory effects, J. Biochem. Mol. Toxicol., 2015, vol. 29, no. 1, pp. 29–34.

    CAS  PubMed  Google Scholar 

  52. Stanfel, M.N., Shamieh, L.S., Kaeberlein, M., and Kennedy, B.K., The TOR pathway comes of age, Biochim. Biophys. Acta, Gen. Subj., 2009, vol. 1790, pp. 1067–1074.

    CAS  Google Scholar 

  53. Trelinska, J., Dachowska, I., Kotulska, K., et al., Complications of mammalian target of rapamycin inhibitor anticancer treatment among patients with tuberous sclerosis complex are common and occasionally life-threatening, Anticancer Drugs, 2015, vol. 26, pp. 437–442.

    CAS  PubMed  Google Scholar 

  54. van Leeuwen, I.M., Cyclotherapy: opening a therapeutic window in cancer treatment, Oncotarget, 2012, vol. 3, pp. 596–600.

    PubMed  PubMed Central  Google Scholar 

  55. van Leeuwen, I.M. and Lain, S., Pharmacological manipulation of the cell cycle and metabolism to protect normal tissues against conventional anticancer drugs, Oncotarget, 2011, vol. 2, no. 4, pp. 274–276.

    PubMed  PubMed Central  Google Scholar 

  56. van Leeuwen, I.M., Rao, B., Sachweh, M.C., and Laín, S., An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells, Cell Cycle, 2012, vol. 11, no. 9, pp. 1851–1861.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vergès, B. and Cariou, B., mTOR inhibitors and diabetes, Diabetes Res. Clin. Pract., 2015, vol. 110, pp. 101–108. https://doi.org/10.1016/j.diabres.2015.09.014

  58. Vignot, S., Faivre, S., Aguirre, D., and Raymond, E., mTOR-targeted therapy of cancer with rapamycin derivatives, Ann. Oncol., 2005, vol. 16, no. 4, pp. 525–537.

    CAS  PubMed  Google Scholar 

  59. Wang, D. and Wu, X., In vitro and in vivo targeting of bladder carcinoma with metformin in combination with cisplatin, Oncol. Lett., 2015, vol. 10, no. 2, pp. 975–981.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, X.W. and Zhang, Y.J., Targeting mTOR network in colorectal cancer therapy, World J. Gastroenterol., 2014, vol. 20, no. 15, pp. 4178–4188.

    PubMed  PubMed Central  Google Scholar 

  61. Wang, Y., Wei, J., Li, L., et al., Combined use of metformin and everolimus is synergistic in the treatment of breast cancer cells, Oncol. Res., 2014, vol. 22, no. 4, pp. 193–201.

    PubMed  Google Scholar 

  62. Wilkinson, J.E., Burmeister, L., Brooks, S.V., et al., Rapamycin slows aging in mice, Aging Cell, 2012, vol. 11, no. 4, pp. 675–682.

    CAS  PubMed  Google Scholar 

  63. Xiong, Y., Zhao, Y., Miao, L., et al., Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer, J. Control Release, 2016, vol. 244, pp. 63–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, J., Samsel, P.A., Narov, K., et al., Combination of everolimus with sorafenib for solid renal tumors in Tsc2 +/– mice is duperior to everolimus alone, Neoplasia, 2017, vol. 19, no. 2, pp. 112–120.

    PubMed  PubMed Central  Google Scholar 

  65. Yu, G., Fang, W., Xia, T., et al., Metformin potentiates rapamycin and cisplatin in gastric cancer in mice, Oncotarget, 2015, vol. 6, no. 14, pp. 12 748–12 762.

    Google Scholar 

  66. Zou, H., Li, L., Garcia Carcedo, I., et al., Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis, Int. J. Nanomed., 2016, vol. 11, pp. 1947–1958.

    CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 17-75-10 112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Yurova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurova, M.N. The Use of Geroprotective Agents (mTOR Inhibitors) in the Treatment of Cancer Patients. Adv Gerontol 10, 287–291 (2020). https://doi.org/10.1134/S2079057020030170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057020030170

Keywords:

Navigation