Skip to main content
Log in

Neurochemical and Morphological Changes in the Microstructures of the Compact Part of the Substantia Nigra of the Human Brain in Aging and Parkinson’s Disease (Literature Review)

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

In research on the pathogenetic patterns of Parkinson’s disease, it is important to adequately assess the mechanisms of age-related involution and morphological changes that form in the brain during this process. The clinical symptoms detected in Parkinson’s disease (rigidity, hypokinesia, tremor) indicate the involvement of nigrostriatal brain structures in the pathological process due to the death of dopamine neurons in the compact part of the substantia nigra. At the same time, a loss of these neurons, as well as a change in the number of neuroglia cells in the substantia nigra of the brain, are detected not only in Parkinson’s disease but also in physiological aging. This review presents and compares data on the morphological changes in the compact part of the substantia nigra of the human brain in normal aging and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2008, vol. 1.

  2. Bocharov, E.V., Kucheryanu, V.G., and Bocharova, O.A., Functional limits of the dopaminergic system and cancer, Part 1, Patol. Fiziol. Eksp. Ter., 2017, vol. 61, no. 3, pp. 116–126.

    Google Scholar 

  3. Voronkov, D.N., Khudoerkov, R.M., Dikalova, Yu.V., and Sheloukhova, L.I., Quantitative evaluation of changes in the striatal astrocyte axons in simulated parkinsonism, Bull. Exp. Biol. Med., 2016, vol. 160, no. 4, pp. 505–509.

    Article  CAS  PubMed  Google Scholar 

  4. Demograficheskii ezhegodnik Rossii, 2015: Statisticheskii sbornik (Demographic Yearbook of Russia, 2015: Statistical Handbook), Moscow: Rosstat, 2015.

  5. Illarioshkin, S.N., Modern concepts about the etiology of Parkinson’s disease, Nevrol. Zh., 2015, no. 20, pp. 4–13.

  6. Korzhevskii, D.E., Sukhorukova, E.G., and Grigor’ev, I.P., The distribution of iron in the substantia nigra of the human brain, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2013, vol. 113, no. 6, pp. 77–80.

    CAS  Google Scholar 

  7. Alladi, P.A., Mahadevan, A., Yasha, T.C., et al., Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: relevance to lower incidence of Parkinson’s disease, Neuroscience, 2009, vol. 159, no. 1, pp. 236–245.

    Article  CAS  PubMed  Google Scholar 

  8. Aulich, S., Masperone, L., Narkiewicz, J., et al., α‑Synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication, Sci. Rep., 2017, vol. 7, no. 1. https://doi.org/10.1038/s41598-017-10236-x

  9. Ayton, S., Lei, P., Adlard, P.A., et al., Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease, Mol. Neurodegener., 2014, vol. 9, no. 27. https://doi.org/10.1186/1750-1326-9-27

  10. Barcia, C., Ros, C.M., Ros-Bernal, F., et al., Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques, J. Neuroimmunol., 2013, vol. 261, nos. 1–2, pp. 60–66. https://doi.org/10.1016/j.jneuroim.2013.05.001

  11. Bellinger, F.P., Bellinger, M.T., Seale, L.A., et al., Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson’s brain, Mol. Neurodegener., 2011, vol. 6, no. 1, p. 8. https://doi.org/10.1186/1750-1326-6-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borges, C.R., Geddes, T., Watson, J.T., et al., Dopamine biosynthesis is regulated by S-glutathionylation: potential mechanism of tyrosine hydroxylase inhibition during oxidative stress, J. Biol. Chem., 2002, vol. 277, pp. 48295–48302.

    Article  CAS  PubMed  Google Scholar 

  13. Braak, H., Sastre, M., and Del Tredici, K., Development of α-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease, Acta Neuropathol., 2007, vol. 114, no. 3, pp. 231–241.

    Article  CAS  PubMed  Google Scholar 

  14. Brück, D., Wenning, G.K., Stefanova, N., and Fellner, L., Glia and α-synuclein in neurodegeneration: a complex interaction, Neurobiol. Dis., 2016, vol. 85, pp. 262–274.

  15. Cabello, C.R., Thune, J.J., Pakkenberg, H., and Pakkenberg, B., Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy, Neuropathol. Appl. Neurobiol., 2002, vol. 28, no. 4, pp. 283–291.

    Article  CAS  PubMed  Google Scholar 

  16. Castelo-Branco, G. and Arenas, E., Function of Wnts in dopaminergic neuron development, Neurodegener. Dis., 2006, vol. 3, nos. 1–2, pp. 5–11. https://doi.org/10.1159/000092086

  17. Chu, Y., Kompoliti, K., Cochran, E.J., et al., Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra, J. Comp. Neurol. 2002, vol. 450, no. 3, pp. 203–214.

    Article  CAS  PubMed  Google Scholar 

  18. Dickson, D.W., Parkinson’s disease and Parkinsonism: neuropathology, Cold Spring Harbor Perspect. Med., 2012, vol. 2, no. 8. https://doi.org/10.1101/cshperspect.2:a009258

  19. Dusek, P., Roos, P.M., Litwin, T., et al., The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases, J. Trace Elem. Med. Biol., 2015, vol. 31, pp. 193–203.

    Article  CAS  PubMed  Google Scholar 

  20. Esiri, M.M., Ageing and the brain, J. Pathol., 2007, vol. 211, pp. 181–187.

    Article  CAS  PubMed  Google Scholar 

  21. Fabricius, K., Jacobsen, J.S., and Pakkenberg, B., Effect of age on neocortical brain cells in 90+ year old human females—a cell counting study, Neurobiol. Aging, 2013, vol. 34, no. 1, pp. 91–99.

    Article  PubMed  Google Scholar 

  22. Faucheux, B.A., Mautin, M.E., Beaumont, C.M., et al., Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease, J. Neurochem., 2003, vol. 86, no. 5, pp. 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  23. Fearnley, J.M. and Lees, A.J., Ageing and Parkinson’s disease: substantia nigra regional selectivity, Brain, 1991, vol. 114, pp. 2283–2301.

    Article  PubMed  Google Scholar 

  24. Franceschi, C., Inflammaging as a major characteristic of old people: can it be prevented or cured?, Nutr. Rev., 2007, vol. 65, no. 12, pp. 173–176.

    Article  Google Scholar 

  25. Hare, D.J. and Double, K.L., Iron and dopamine: a toxic couple, Brain, 2016, vol. 139, no. 4, pp. 1026–1035. https://doi.org/10.1093/brain/aww022

    Article  PubMed  Google Scholar 

  26. Harms, A.S., Cao, S., Rowse, A.L., et al., MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration, J. Neurosci., 2013, vol. 33, no. 23, pp. 9592–9600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hegarty, S.V., Sullivan, A.M., and O’Keeffe, G.W., Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development, Dev. Biol., 2013, vol. 379, no. 2, pp. 123–138. https://doi.org/10.1016/j.ydbio.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  28. Hirsch, E.C., Iron transport in Parkinson’s disease, Parkinsonism Relat. Dis., 2009, vol. 15, no. 3, pp. 209–211. https://doi.org/10.1016/S1353-8020(09)70816-8

    Article  Google Scholar 

  29. Kordower, J.H., Olanow, C.W., Dodiya, H.B., et al., Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease, Brain, 2013, vol. 136, no. 8, pp. 2419–2431.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Le, W., Wu, J., and Tang, Y., Protective microglia and their regulation in Parkinson’s disease, Front. Mol. Neurosci., 2016, vol. 21, pp. 9–89. https://doi.org/10.3389/fnmol.2016.00089

    Article  CAS  Google Scholar 

  31. Inflammation in Parkinson’s Disease: Scientific and Clinical Aspects, Madhavi, T., Ed., New York: Springer-Verlag, 2014. https://doi.org/10.1007/97-3-319-08046-8

    Google Scholar 

  32. Mirza, B., Hadberg, H., Thomsen, P., and Moos, T., The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease, Neuroscience, 2000, vol. 95, no. 2, pp. 425–432.

    Article  CAS  PubMed  Google Scholar 

  33. Mori, F., Tanji, K., Yoshimoto, M., et al., Demonstration of α-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinase K and formic acid pretreatment, Exp. Neurol., 2002, vol. 176, no. 1, pp. 98–104.

    Article  CAS  PubMed  Google Scholar 

  34. Morris, G.P., Clark, I.A., Zinn, R., and Vissel, B., Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research, Neurobiol. Learn. Mem., 2013, vol. 105, pp. 40–53.

    Article  CAS  PubMed  Google Scholar 

  35. Pannese, E., Morphological changes in nerve cells during normal aging, Brain Struct. Funct., 2011, vol. 216, no. 2, pp. 85–89.

    Article  PubMed  Google Scholar 

  36. Petrosyan, T.R., Gevorkyan, O.V., Chavushyan, V.A., et al., Effects of bacterial melanin on motor recovery and regeneration after unilateral destruction of substantia nigra pars compacta in rats, Neuropeptides, 2014, vol. 48, no. 1, pp. 37–46.

    Article  CAS  PubMed  Google Scholar 

  37. Ransohoff, R.M. and Perry, V.H., Microglial physiology: unique stimuli, specialized responses, Annu. Rev. Immunol., 2009, vol. 27, pp. 119–145.

    Article  CAS  PubMed  Google Scholar 

  38. Recasens, A., Dehay, B., Bové, J., et al., Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys, Ann. Neurol., 2014, pp. 75, no. 3, pp. 351–362.

  39. Rodríguez-Arellano, J.J., Parpura, V., Zorec, R., and Verkhratsky, A., Astrocytes in physiological aging and Alzheimer’s disease, Neuroscience, 2016, vol. 323, pp. 170–182.

  40. Ross, G.W., Petrovitch, H., Abbott, R.D., et al., Parkinsonian signs and substantia nigra neuron density in decendents elders without PD, Ann. Neurol., 2004, vol. 56, no. 4, pp. 532–539.

    Article  PubMed  Google Scholar 

  41. Rudow, G., O’Brien, R., Savonenko, A.V., et al., Morphometry of the human substantia nigra in ageing and Parkinson’s disease, Acta Neuropathol., 2008, vol. 115, no. 4, pp. 461–470.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Segura-Aguilar, J., Paris, I., Mucoz, P., et al., Protective and toxic roles of dopamine in Parkinson’s disease, J. Neurochem., 2014, vol. 129, no. 6, pp. 898–915.

    Article  CAS  PubMed  Google Scholar 

  43. Sofroniew, M.V., Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci., 2009, vol. 32, no. 12, pp. 638–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sofroniew, M.V. and Vinters, H.V., Astrocytes: biology and pathology, Acta Neuropathol., 2010, vol. 119, no. 1, pp. 7–35.

    Article  PubMed  Google Scholar 

  45. Song, Y.J., Halliday, G.M., Holton, J.L., et al., Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression, J. Neuropathol. Exp. Neurol., 2009, vol. 68, no. 10, pp. 1073–1083.

    Article  CAS  PubMed  Google Scholar 

  46. Streit, W.J. and Xue, Q.S., Alzheimer’s disease, neuroprotection, and CNS immunosenescence, Front. Pharmacol., 2012, vol. 3, p. 138. https://doi.org/10.3389/fphar.2012.00138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Streit, W.J. and Xue, Q.S., Microglial senescence, CNS Neurol. Disord.: Drug Targets, 2013, vol. 12, no. 6, pp. 763–767.

    Article  CAS  Google Scholar 

  48. Thannickal, T.C., Lai, Y.Y., and Siegel, J.M., Hypocretin (orexin) cell loss in Parkinson’s disease, Brain, 2007, vol. 130, no. 6, pp. 1586–1595.

    Article  PubMed  Google Scholar 

  49. Tong, J., Ang, L.C., Williams, B., et al., Low levels of astroglial markers in Parkinson’s disease: relationship to α-synuclein accumulation, Neurobiol. Dis., 2015, vol. 82, pp. 243–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Verkhratsky, A., Rodríguez, J.J., and Parpura, V., Neuroglia in ageing and disease, Cell. Tissue Res., 2014, vol. 357, no. 2, pp. 493–503. https://doi.org/10.1007/s00441-014-1814-z

    Article  PubMed  Google Scholar 

  51. Viana, S.D., Valero, J., Rodrigues-Santos, P., et al., Regulation of striatal astrocytic receptor for advanced glycation endproducts variants in an early stage of experimental Parkinson’s disease, J. Neurochem., 2016, vol. 138, no. 4, pp. 598–609.

    Article  CAS  PubMed  Google Scholar 

  52. Walker, D.G., Lue, L.F., Adler, C.H., et al., Changes in properties of serine 129 phosphorylated α-synuclein with progression of Lewy-type histopathology in human brains, Exp. Neurol., 2013, vol. 240, pp. 190–204.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, C., Klechikov, A.G., Gharibyan, A.L., et al., The role of pro-inflammatory S100A9 in Alzheimer’s disease amyloid-neuroinflammatory cascade, Acta Neuropathol., 2014, vol. 127, no. 4, pp. 507–522.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, D.D. and Bordey, A., The astrocyte odyssey, Prog. Neurobiol., 2008, vol. 86, no. 4, pp. 342–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zecca, L., Stroppolo, A., Gatti, A., et al., The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 26, pp. 9843–9848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zecca, L., Youdim, M., Riederer, P., et al., Iron, brain ageing and neurodegenerative disorders, Nat. Rev., 2004, vol. 5, pp. 863–873.

    Article  CAS  Google Scholar 

  57. Zhang, W., Phillips, K., Wielgus, A.R., et al., Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease, Neurotoxic. Res., 2011, vol. 19, no. 1, pp. 63–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Salkov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salkov, V.N., Khudoerkov, R.M. Neurochemical and Morphological Changes in the Microstructures of the Compact Part of the Substantia Nigra of the Human Brain in Aging and Parkinson’s Disease (Literature Review). Adv Gerontol 9, 174–178 (2019). https://doi.org/10.1134/S207905701902019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207905701902019X

Keywords:

Navigation