Advances in Gerontology

, Volume 4, Issue 3, pp 187–192 | Cite as

Survival and life span of Drosophila melanogaster in response to terahertz radiation

  • N. Ya. WeismanEmail author
  • V. I. Fedorov
  • E. F. Nemova
  • N. A. Nikolaev


Life span control is realized by the interaction of many genetic factors with the environment. Due to the development of modern technologies based on nonionized terahertz radiation (0.1–10 THz), the investigation of the influence of this radiation on living organisms is urgent. In our study, the effects of terahertz radiation on the survival and lifespan of the Oregon R line of Drosophila melanogaster were multidirectional, depending on the age of the insects. The terahertz effect on survival was negative or neutral in early life and positive in later life. In the drosophila response to terahertz radiation, sex differences were manifested. Males were not very sensitive to terahertz radiation. The survival of irradiated females increased significantly in the second half of the imago life. Irradiation of the drosophila did not significantly affect mean and maximal values of lifespan, but the gap between the values of the mean lifespans of males and females in this group of insects was increased. The mechanisms for the effects of terahertz radiation on survival and lifespan might be associated with changes in the cellular membrane, gene expression, and signaling pathways controlling these features.


lifespan terahertz radiation stress sex differences drosophila 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antsygin, V.D., Mamrashev, A.A., Nikolaev, N.A., et al., Small-size terahertz spectrometer using the second harmonic of a femtosecond fiber laser, Avtometriya, 2010, vol. 46, no. 3, p. 110.Google Scholar
  2. 2.
    Bondar, N.P., Kovalenko, I.L., Avgustinovich, D.F., et al., Behavioral effect of terahertz waves in male mice, Bull. Exp. Biol. Med., 2008, vol. 145, no. 4, pp. 401–405.PubMedCrossRefGoogle Scholar
  3. 3.
    Bulgakova, N.A., Trunova, S.A., and Omel’yanchuk, L.V., Mutation Indyp115 extends life span in adult Drosophila melanogaster depending on sex and genetic background, Russ. J. Genet., 2004, vol. 40, no. 4, pp. 381–386.CrossRefGoogle Scholar
  4. 4.
    Weisman, N.Ya., Golubovsky, M.D., and Ilinsky, Yu.Yu., Interpopulation and sex-specific life span differences in human populations and their modeling in Drosophila, Usp. Gerontol., 2013, vol. 26, no. 1, pp. 66–75.Google Scholar
  5. 5.
    Weisman, N.Ya., Evgen’ev, M.B., and Golubovsky, M.D., Parallelism and paradox of the effect of hsf1 mutation of regulator of heat-shock proteins and l(2)gl oncosuppressor on viability and longevity of D. melanogaster, Izv. Ross. Akad. Nauk, Ser. Biol., 2012, no. 1, pp. 27–34.Google Scholar
  6. 6.
    Zalyubovskaya, N.P., et al., Biological activity of millimetric and submillimetric waves, Eksp. Klin. Radiol., 1970, no. 6, pp. 202–205.Google Scholar
  7. 7.
    Kirichuck, V.F., Ivanov, A.N., Antipova, O.N., et al., Sex-specific differences in changes of disturbed functional activity of platelets in albino rats under the effect of terahertz electromagnetic radiation at nitric oxide frequencies, Bull. Exp. Biol. Med., 2008, vol. 145, no. 1, pp. 75–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Fedorov, V.I., Study of biological effects of electromagnetic radiation of submillimeter part of terahertz range, Biomed. Radioelektron., 2011, no. 2, pp. 17–26.Google Scholar
  9. 9.
    Fedorov, V.I., Weisman, N.Ya., Nemova, E.F., et al., Postponed results of the effect of terahertz radiation on stressed Drosophila females, Byull. Med., 2012, vol. 2, no. 6.
  10. 10.
    Fedorov, V.I., Pogodin, A.S., Dubatolova, T.D., et al., Comparative study of effect of infrared, submillimeter, and millimeter electromagnetic radiation on wing somatic mutations in Drosophila melanogaster induced by gamma-irradiation, Biofizika, 2001, vol. 46, no. 2, pp. 298–302.PubMedGoogle Scholar
  11. 11.
    Aigaki, T., Seong, K., and Matsuo, T., Longevity determination genes in Drosophila melanogaster, Mech. Aging Dev., 2002, vol. 123, pp. 1531–1541.PubMedCrossRefGoogle Scholar
  12. 12.
    Alexandrov, B.S., Phipps, M.L., Alexandrov, L.B., et al., Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells, Sci. Rep., 2013, no. 3, p. 1184. Google Scholar
  13. 13.
    Bland, J.M. and Altman, D.G., The logrank test, Br. Med. J., 2004, vol. 328, no. 7447, p. 1073.CrossRefGoogle Scholar
  14. 14.
    Bock, J., Fukuyo, Y., Kang, S., et al., Mammalian stem cells reprogramming in response to terahertz radiation, PLoS One, 2010, vol. 5, no. 12, p. 15806.CrossRefGoogle Scholar
  15. 15.
    Demidova, E.V., Goryachkovskaya, T.N., Malup, T.K., et al., Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GTP biosensor cells, Bioelectromagnetics, 2013, vol. 34, no. 1, pp. 15–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Gruntenko, N.E., Karpova, E.K., Adonyeva, N.V., et al., Juvenile hormone, 20-hydroxyecdysone and dopamine interaction in Drosophila virilis reproduction under normal and nutritional stress conditions, J. Insect Physiol., 2005, vol. 51, pp. 417–425.PubMedCrossRefGoogle Scholar
  17. 17.
    Innocenti, P., Morrow, E.H., and Dowling, D.K., Mitochondrial genome evolution experimental evidence supports a sex-specific selective sieve, Science, 2011, vol. 332, pp. 845–848.PubMedCrossRefGoogle Scholar
  18. 18.
    Korenstein-Ilan, A., Barbul, A., and Hasin, P., Terahertz radiation increases genomic instability in human lymphocytes, Radiat. Res., 2008, vol. 170, no. 2, pp. 224–234.PubMedCrossRefGoogle Scholar
  19. 19.
    Lin, Y., Seroude, L., and Benzer, S., Extended lifespan and stress resistance in the Drosophila mutant Methuselah, Science, 1998, vol. 282, pp. 943–946.PubMedCrossRefGoogle Scholar
  20. 20.
    Nuzhdin, S.V., Pasyukova, E.G., Dilda, C.H.L., et al., Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 9734–9739.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Pan, Z. and Chang, C., Gender and the regulation of longevity: implications for autoimmunity, Autoimmun. Rev., 2012, vol. 11, nos. 6–7, pp. 393–403.CrossRefGoogle Scholar
  22. 22.
    Vermeulen, C.J. and Loeschcke, V., Longevity and the stress response in Drosophila, Exp. Gerontol., 2007, vol. 42, pp. 153–159.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilmink, G.J. and Grundt, L.E., Current state of research on biological effects of terahertz radiation, J. Infrared Millimeter Terahertz Waive, 2011, vol. 32, no. 10, pp. 1074–1122.Google Scholar
  24. 24.
    Wilmink, G.J., Ibey, B.L., Roth, C.L., et al., Determination of death thresholds and identification of terahertz (THz)-specific gene expression signatures, in Proc. XXI SPIE 7562, Optical Interactions with Tissues and Cells, 2010, vol. 7562, pp. 75620K–75620K-8.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. Ya. Weisman
    • 1
    Email author
  • V. I. Fedorov
    • 2
  • E. F. Nemova
    • 2
  • N. A. Nikolaev
    • 3
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Laser Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations