Skip to main content
Log in

Nutritional programming: Theoretical concepts and experimental evidence

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

It is known that malnutrition during prenatal development increases the risk of chronic conditions in adulthood. This phenomenon is referred to as the nutritional programming of age-related disorders. It is assumed that the qualitative or quantitative deficiency of certain nutrients during early development elicits an adaptive response, which improves survival in prenatal and early postnatal life. However, a side effect of the adaptive changes may be the development of various disorders at later stages of life. Recent studies indicate that one of the major mechanisms involved in these changes is the epigenetic regulation of gene activity. In this review, we consider experimental data proving that processes arising from a quantitatively or qualitatively restricted diet at early developmental stages play an important role in further life and notably influence the risk of various age-related disorders and life span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhaladze, N.G., Ena, L.M., and Lizun, I.O., Antihypertension and other effects of diet therapy in patients with arterial hypertension and obesity, Ukr. Kardiol. Zh., 2005, no. 2, pp. 85–90.

    Google Scholar 

  2. Vaiserman, A.M., Khalangot, N.D., Pisaruk, A.V., et al., Predisposition to type II diabetes in Ukraine residents, which prenatal development survived starvation during 1932–1933, Usp. Gerontol., 2010, vol. 23, no. 4, pp. 588–592.

    CAS  Google Scholar 

  3. Vanyushin, B.F., DNA methylation in the cells of different organisms, Usp. Sovrem. Biol., 1974, vol. 77, no. 2, pp. 68–90.

    CAS  Google Scholar 

  4. Vanyushin, B.F. and Berdyshev, G.D., Molekulyarnogeneticheskie mekhanizmy stareniya (Molecular and Genetic Mechanisms of Aging), Moscow: Meditsina, 1977.

    Google Scholar 

  5. Vanyushin, B.F. and Romanenko, E.B., Changes in rat DNA methylation in ontogenesis and the affected by hydrocortisone, Biokhimiya, 1979, vol. 44, pp. 78–85.

    CAS  Google Scholar 

  6. Vanyushin, B.F., Zin’kovskaya, G.G., and Berdyshev, G.D., Age-related diminishing of DNA methylation in cattle, Mol. Biol., 1980, vol. 14, pp. 857–866.

    CAS  Google Scholar 

  7. Naumenko, E.V., Dygalo, N.N., and Maslova, N.N., Long-term modification of stress activity by different factors in prenatal ontogenesis, in Ontogeneticheskie i genetiko-evolyutsionnye aspekty neiroendokrinnoi regulyatsii stressa (Ontogenetic and Genetic-Evolutionary Aspects of Neuroendocrine Regulation of Stress), Novosibirsk: Nauka, 1990, pp. 40–54.

    Google Scholar 

  8. Rachkov, B.M., Yur’ev, P.V., and Makarov, V.P., The results of prolonged starvation of people and their families survived war blockade of Leningrad, in Osteokhondrozy i pogranichnye sostoyaniya (Osteochondrosis and Boundary States), St. Petersburg, 1993, pp. 13–18.

    Google Scholar 

  9. Reznikov, A.G., Pishak, V.P., Nosenko, N.D., et al., Prenatal’nyi stress i neiroendokrinnaya patologiya (Prenatal Stress and Neuroendocrine Pathology), Chernovtsy: Medakademiya, 2004.

    Google Scholar 

  10. Khoroshinina, L.P., Golodanie v detstve kak prichina boleznei v starosti (na primere maloletnikh zhitelei blokirovannogo Leningrada) (Starvation in Childhood as the Reason of Diseases in Elderly Age by Example of Little Residents of Blockade Leningrad), St. Petersburg: St.-Petersb. Med. Akad. Posledipl. Obraz., 2002.

    Google Scholar 

  11. Khoroshinina, L.P. and Zhavoronkova, N.V., Starvation in childhood and diabetes mellitus in elderly age, Usp. Gerontol., 2008, vol. 21, no. 4, pp. 684–687.

    CAS  Google Scholar 

  12. Barouki, R., Gluckman, P.D., Grandjean, P., et al., Developmental origins of non-communicable disease: implications for research and public health, Environ. Health, 2012, vol. 11, p. 42.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bartke, A. and Brown-Borg, H., Life extension in the dwarf mouse, Curr. Top Dev. Biol., 2004, vol. 63, pp. 189–225.

    Article  PubMed  CAS  Google Scholar 

  14. Benediktsson, R., Lindsay, R.S., Noble, J., et al., Glucocorticoid exposure in utero—new model for adult hypertension, Lancet, 1993, vol. 341, pp. 339–341.

    Article  PubMed  CAS  Google Scholar 

  15. Brawley, L., Torrens, C., Anthony, F.W., et al., Glycine rectifies vascular dysfunction induced by dietary protein imbalance during pregnancy, J. Physiol., 2004, vol. 554, pp. 497–504.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Burdge, G.C., Lillycrop, K.A., and Jackson, A.A., Nutrition in early life, and risk of cancer and metabolic disease: alternative endings in an epigenetic tale?, Br. J. Nutr., 2009, vol. 101, pp. 619–630.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Calvanese, V., Lara, E., Kahn, A., and Fraga, M.F., The role of epigenetics in ageing and in age-related diseases, Aging Res. Rev., 2009, vol. 8, pp. 268–276.

    Article  CAS  Google Scholar 

  18. Chen, J.H., Martin-Gronert, M.S., Tarry-Adkins, J., and Ozanne, S.E., Maternal protein restriction affects postnatal growth and the expression of key proteins involved in lifespan regulation in mice, PLoS One, 2009, vol. 4, pp. 49–50.

    Article  Google Scholar 

  19. Erhuma, A., Bellinger, L., Bennett, A.J., and Langley-Evans, S.C., Prenatal exposure to undernutrition and programming of responses to high fat feeding in the rat, Br. J. Nutr., 2007, vol. 98, pp. 517–524.

    Article  PubMed  CAS  Google Scholar 

  20. Fernandez-Twinn, D.S. and Ozanne, S.E., Early life nutrition and metabolic programming, Ann. N.Y. Acad. Sci., 2010, vol. 1212, pp. 78–96.

    Article  PubMed  CAS  Google Scholar 

  21. Filiberto, A.C., Maccani, M.A., Koestler, D.C., et al., Birth weight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta, Epigenetics, 2011, vol. 6, pp. 566–572.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Fowden, A.L., Giussani, D.A., and Forhead, A.J., Intrauterine programming of physiological systems: causes and consequences, Physiology (Bethesda), 2006, vol. 21, pp. 29–37.

    Article  PubMed  CAS  Google Scholar 

  23. Fraga, M.F., Ballestar, E., Paz, M.F., et al., Epigenetic differences arise during the lifetime of monozygotic twins, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 10604–10609.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Gambling, L., Maloney, C.A., Andersen, H.S., and McArdle, H.J., Maternal iron deficiency during pregnancy in the rat in duces high blood pressure, obesity, and dyslipidaemia in her offspring, Pediatr. Res., 2005, vol. 58, p. 1024.

    Google Scholar 

  25. Gluckman, P.D., Lillycrop, K.A., Vickers, M.H., et al., Metabolic plasticity during mammalian development is directionally dependent on early nutritional status, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 12796–12800.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Grace, C.E., Kim, S.J., and Rogers, J.M., Maternal influences on epigenetic programming of the developing hypothalamic-pituitary-adrenal axis, Birth Defects Res. A: Clin. Mol. Teratol., 2011, vol. 91, pp. 797–805.

    Article  CAS  Google Scholar 

  27. Gravina, S. and Vijg, J., Epigenetic factors in aging and longevity, Pflugers Arch., 2010, vol. 459, pp. 247–258.

    Article  PubMed  CAS  Google Scholar 

  28. Hales, C.N. and Barker, D.J., Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis, Diabetologia, 1992, vol. 35, pp. 595–601.

    Article  PubMed  CAS  Google Scholar 

  29. Harrison, M. and Langley-Evans, S.C., Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy, Br. J. Nutr., 2008, vol. 101, pp. 1020–1030.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Heijmans, B.T., Tobi, E.W., Stein, A.D., et al., Persistent epigenetic differences associated with prenatal exposure to famine in humans, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 17046–17049.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hershko, A.Y., Kafri, T., Fainsod, A., and Razin, A., Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development, Gene, 2003, vol. 302, pp. 65–72.

    Article  PubMed  CAS  Google Scholar 

  32. Hochberg, Z., Feil, R., Constancia, M., et al., Child health, developmental plasticity, and epigenetic programming, Endocrinol. Rev., 2011, vol. 32, pp. 159–224.

    Article  CAS  Google Scholar 

  33. Holliday, R., The inheritance of epigenetic defects, Science, 1987, vol. 238, pp. 163–170.

    Article  PubMed  CAS  Google Scholar 

  34. Holloszy, J.O. and Fontana, L., Caloric restriction in humans, Exp. Gerontol., 2007, vol. 42, pp. 709–712.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Hughson, M.D., Gobe, G.C., Hoy, W.E., et al., Associations of glomerular number and birth weight with clinicopathological features of African Americans and whites, Am. J. Kidney Dis., 2008, vol. 52, pp. 18–28.

    Article  PubMed  Google Scholar 

  36. Joles, J.A., Sculley, D.V., and Langley-Evans, S.C., Proteinuria in aging rats due to low-protein diet during mid-gestation, J. Dev. Origins Health Dis., 2010, vol. 1, pp. 75–83.

    Article  CAS  Google Scholar 

  37. Langley-Evans, S.C., Nutritional programming of disease: unraveling the mechanism, J. Anat., 2008, vol. 215, pp. 36–51.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Langley-Evans, S.C., Welham, S.J.M., Sherman, R.C., and Jackson, A.A., Weanling rats exposed to maternal low protein diets during discrete periods of gestation exhibit differing severity of hypertension, Clin. Sci., 1996, vol. 91, pp. 607–615.

    PubMed  CAS  Google Scholar 

  39. Lillycrop, K.A., Phillips, E.S., Jackson, A.A., et al., Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring, J. Nutr., 2005, vol. 135, pp. 1382–1386.

    PubMed  CAS  Google Scholar 

  40. Lopes de Souza, S., Orozco-Solis, R., Grit, I., et al., Perinatal protein restriction reduces the inhibitory action of serotonin on food intake, Eur. J. Neurosci., 2008, vol. 27, pp. 1400–1408.

    Article  PubMed  Google Scholar 

  41. Martin-Gronert, M.S., Tarry-Adkins, J.L., Cripps, R.L., et al., Maternal protein restriction leads to early life alterations in the expression of key molecules involved in the aging process in rat offspring, Am. J. Physiol., Regul. Integr. Comp. Physiol., 2008, vol. 294, pp. 494–500.

    Article  CAS  Google Scholar 

  42. Masoro, E.J., McCarter, R.J., Katz, M.S., and McMahan, C.A., Dietary restriction alters characteristics of glucose fuel use, J. Gerontol., 1992, vol. 47, pp. 202–208.

    Article  Google Scholar 

  43. Masternak, M.M., Al-Regaiey, K.A., Del Rosario Lim, M.M., et al., Effects of caloric restriction on insulin pathway gene expression in the skeletal muscle and liver of normal and long-lived GHR-KO mice, Exp. Gerontol., 2005, vol. 40, pp. 679–684.

    Article  PubMed  CAS  Google Scholar 

  44. McCance, R.A., Food, growth, and time, Lancet, 1962, vol. 2, pp. 671–676.

    Article  PubMed  CAS  Google Scholar 

  45. McCarrison, R., Nutrition and Health, London: Faber & Faber, 1953.

    Google Scholar 

  46. Napoli, C., Developmental mechanisms involved in the primary prevention of atherosclerosis and cardiovascular disease, Curr. Atheroscler. Rep., 2011, vol. 13, pp. 170–175.

    Article  PubMed  CAS  Google Scholar 

  47. Neel, J.V., Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?, Am. J. Hum. Genet., 1962, vol. 14, pp. 353–362.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Omodei, D. and Fontana, L., Calorie restriction and prevention of age-associated chronic disease, FEBS Lett., 2011, vol. 585, pp. 1537–1542.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Ozanne, S.E. and Hales, C.N., Lifespan: catch-up growth and obesity in male mice, Nature, 2004, vol. 427, pp. 411–412.

    Article  PubMed  CAS  Google Scholar 

  50. Ozanne, S.E., Smith, G.D., Tikerpae, J., and Hales, C.N., Altered regulation of hepatic glucose output in the male offspring of protein-malnourished rat dams, Am. J. Physiol., 1996, vol. 270, pp. 559–564.

    Google Scholar 

  51. Ozanne, S.E., Olsen, G.S., Hansen, L.L., et al., Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle, J. Endocrinol., 2003, vol. 177, pp. 235–241.

    Article  PubMed  CAS  Google Scholar 

  52. Pinney, S.E. and Simmons, R.A., Epigenetic mechanisms in the development of type 2 diabetes, Trends Endocrinol. Metab., 2010, vol. 21, pp. 223–229.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Rincon, M., Rudin, E., and Barzilai, N., The insulin/IGF-1 signaling in mammals and its relevance to human longevity, Exp. Gerontol., 2005, vol. 40, pp. 873–877.

    Article  PubMed  CAS  Google Scholar 

  54. Sayer, A.A., Dunn, R.L., Langley-Evans, S.C., and Cooper, C., Intrauterine exposure to a maternal low protein diet shortens lifespan in rats, Gerontology, 2001, vol. 47, pp. 9–14.

    Article  Google Scholar 

  55. Selman, C., Lingard, S., Choudhury, A.I., et al., Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice, Faseb J., 2008, vol. 22, pp. 807–818.

    Article  PubMed  CAS  Google Scholar 

  56. Sinclair, K.D., Allegrucci, C., Singh, R., et al., DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 19351–19356.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Slonaker, J.R., The effect of different per cents of protein in the diet. IV. Reproduction, Am. J. Physiol., 1931, vol. 97, pp. 322–328.

    Google Scholar 

  58. Stein, A.D., Kahn, H.S., Rundle, A., et al., Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine, Am. J. Clin. Nutr., 2007, vol. 85, pp. 869–876.

    PubMed  CAS  Google Scholar 

  59. Stöger, R., The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes?, BioEssays, 2008, vol. 30, pp. 156–166.

    Article  PubMed  Google Scholar 

  60. Thompson, R.F. and Einstein, F.H., Epigenetic basis for fetal origins of age-related disease, J. Women’s Health, 2010, vol. 19, pp. 581–587.

    Article  Google Scholar 

  61. Tobi, E.W., Heijmans, B.T., Kremer, D., et al., DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age, Epigenetics, 2011, vol. 6, pp. 171–176.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Vehaskari, V.M., Aviles, D.H., and Manning, J., Prenatal programming of adult hypertension in the rat, Kidney Int., 2001, vol. 59, pp. 238–245.

    Article  PubMed  CAS  Google Scholar 

  63. Verma, M., Cancer control and prevention by nutrition and epigenetic approaches, Antioxid. Redox. Signal., 2012, vol. 17, pp. 355–364.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Vickaryous, N. and Whitelaw, E., The role of the early embryonic environment on epigenotype and phenotype, Reprod. Fertil. Dev., 2005, vol. 17, pp. 335–340.

    Article  PubMed  Google Scholar 

  65. Vickers, M.H., Gluckman, P.D., Coveny, A.H., et al., Neonatal leptin treatment reverses developmental programming, Endocrinology, 2005, vol. 146, pp. 4211–4216.

    Article  PubMed  CAS  Google Scholar 

  66. Woodall, S.M., Johnston, B.M., Breier, B.H., and Gluckman, P.D., Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring, Pediatr. Res., 1996, vol. 40, pp. 438–443.

    Article  PubMed  CAS  Google Scholar 

  67. Yates, Z., Tarling, E.J., Langley-Evans, S.C., and Salter, A.M., Maternal undernutrition programmes atherosclerosis in the ApoE*3 Leiden mouse, Br. J. Nutr., 2008, vol. 101, pp. 1185–1194.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vaiserman.

Additional information

Original Russian Text © O.G. Zabuga, N.G. Akhaladze, A.M. Vaiserman, 2013, published in Uspekhi Gerontologii, 2013, Vol. 26, No. 2, pp. 212–223.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabuga, O.G., Akhaladze, N.G. & Vaiserman, A.M. Nutritional programming: Theoretical concepts and experimental evidence. Adv Gerontol 4, 3–11 (2014). https://doi.org/10.1134/S2079057014010159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057014010159

Keywords

Navigation