Skip to main content
Log in

Structural and functional basis of accelerated involution of the thymus in OXYS rats

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Involution of the thymus is one of the most expressed indices of aging of the immune system. The mechanisms of involution of the thymus are relatively well studied, whereas the reasons and mechanisms of accelerated involution of the thymus are less known. We have previously reported that premature aging in OXYS rats is associated with accelerated involution of the thymus. The aim of the present study was to examine morphofunctional conditions of epithelial cells in the thymus of OXYS rats. Immunohistochemical study revealed that in 3.5-month-old OXYS rats, i.e. in the initial period of age-related involution, the network of epithelial cells in the thymus was reduced, and the volume and area of the surface of epithelial cells in the cortical substance was lower compared to control Wistar rats. Electron microscopy found strong changes in the ultrastructure of epithelial cells, such as shrinkage of the cytoplasm volume, a clear decrease in the size and number of secretory vacuoles, and multiple autophagosomes and phagolysosomes. Our data show that a possible mechanism of the reduction of the epithelial network in the thymus of OXYS rats is an enhancement of autophagy, probably related to specific mitochondria dysfunction in these rats. The fact of age-related retardation of autophagy in some tissues is well known. In spite to this, based on the data from OXYS rats, we suppose that long-term deviation of intensity of this process from the physiological level may be directed not only to its attenuation but also to its activation and thus results in degenerative modifications of organs and the formation of the progeroid phenotype of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspinall, R. and Mitchell, W., Reversal of age-associated thymic atrophy: treatments, delivery, and side effects, Exp. Gerontol., 2008, vol. 43, no. 7, pp. 700–705.

    Article  PubMed  CAS  Google Scholar 

  2. Cheng, L., Guo, J., Sun, L., et al., Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy, J. Biol. Chem., 2010, vol. 285, no. 8, pp. 5836–5847.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Cuddihy, A.R., Ge, S., Zhu, J., et al., VEGF-mediated crosstalk within the neonatal murine thymus, Blood, 2009, vol. 113, no. 12, pp. 2723–2731.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Derhovanessian, E., Solana, R., Larbi, A., and Pawelec, G., Immunity, aging and cancer, Immunol. Aging, 2008, vol. 5, no. 11. doi: 10.1186/1742-4933-5-11

    Google Scholar 

  5. Dooley, J. and Liston, A., Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue, Eur. J. Immunol., 2012, vol. 42, pp. 1073–1079.

    Article  PubMed  CAS  Google Scholar 

  6. Gillard, G.O., Dooley, J., Erickson, M., et al., Aire-dependent alterations in medullary thymic epithelium indicate a role for Aire in thymic epithelial differentiation, J. Immunol., 2007, vol. 178, pp. 3007–3015.

    Article  PubMed  CAS  Google Scholar 

  7. Gordon, J. and Manley, N.R., Mechanism of thymus organogenesis and morphogenesis, Development, 2011, vol. 138, no. 18, pp. 3865–3878.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Griesemer, A.D., Sorenson, E.C., and Hardy, M.A., The role of the thymus in tolerance, Transplantation, 2010, vol. 90, no. 5, pp. 465–474.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Gruver, A.L., Hudson, L.L., and Sempowski, G.D., Immunosenescence of aging, J. Pathol., 2007, vol. 211, no. 2, pp. 144–156.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Gui, J., Mustachio, L.M., Su, D.-M., and Craig, R.W., Thymus size and age-related thymic involution: early programming, sexual dimorphism, progenitors and stroma, Aging Dis., 2012, vol. 3, no. 3, pp. 280–290.

    PubMed Central  PubMed  Google Scholar 

  11. Gui, J., Morales, A.J., Maxey, S.E., et al., MCL 1 increases primitive thymocyte viability in female mice and promotes thymic expansion into adulthood, Int. Immunol., 2011, vol. 23, pp. 647–659.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Kvell, K., Varecza, Z., Bartis, D., et al., Wnt4 and LAP2alpha as pacemakers of thymic epithelial senescence, PLoS One, 2010, vol. 5, no. 5, p. e10701. doi: 10.371/journal.pone.0010701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Levine, B. and Kroemer, G., Autophagy in the pathogenesis of disease, Cell, 2008, vol. 132, no. 1, pp. 27–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Levine, B., Mizushima, N., and Virgin, H., Autophagy in immunity and inflammation, Nature, 2011, vol. 469, no. 7330, pp. 323–335.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Li, L., Hsu, H.-C., William, G.E., et al., Cellular mechanism of thymic involution, Scand. J. Immunol., 2003, vol. 57, pp. 410–422.

    Article  PubMed  CAS  Google Scholar 

  16. Lynch, H.E., Goldberg, G.L., Chidgey, A., et al., Thymic involution and immune reconstitution, Trends Immunol., 2009, vol. 37, no. 7, pp. 366–373.

    Article  CAS  Google Scholar 

  17. De Mello Coelho, V., Bunbury, M., Rangel, L.B., et al., Fat storing multilocular cells expressing CCR5 increase in the thymus with advancing age: potential role for CCR5 ligands on the differentiation and migration of preadipocytes, Int. J. Med. Sci., 2010, vol. 7, no. 1, pp. 1–4.

    Article  PubMed Central  Google Scholar 

  18. Mizushima, N. and Levine, B., Autophagy in mammalian development and differentiation, Nat. Cell. Biol., 2010, vol. 12, no. 9, pp. 823–830.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Naylor, P.H., Quadrini, K., Garaci, E., et al., Immunopharmacology of thymosin alpfa1 and cytokine synergy, Ann. N.Y. Acad. Sci., 2007, vol. 1112, pp. 235–244.

    Article  PubMed  CAS  Google Scholar 

  20. Nedjic, J., Aichinger, M., Emmerich, J., et al., Autophagy in thymic epithelium shapes the T cell repertoire and is essential for tolerance, Nature, 2008, vol. 455, pp. 396–400.

    Article  PubMed  CAS  Google Scholar 

  21. Obukhova, L.A., Skulachev, V.P., and Kolosova, N.G., Mitochondria targeted antioxidant SkQ1 inhibits age dependent involution of the thymus in normal and senescence-prone rats, Aging, 2009, vol. 1, no. 4, pp. 1–13.

    Google Scholar 

  22. Ortman, C.L., Dittmar, K.A., Witte, P.L., and Le, Ph.T., Molecular characterization of the mouse involved thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments, Int. Immunol., 2002, vol. 14, no. 7, pp. 813–822.

    Article  PubMed  CAS  Google Scholar 

  23. Reynolds, E., The use of lead citrate at high pH as an electron opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Steinman, G.G., The involution of the aging human thymic epithelium is independent of puberty: a morphometric study, Scand. J. Immunol., 1985, vol. 22, pp. 563–575.

    Article  Google Scholar 

  25. Su, D. and Manley, N.R., Stage-specific changes in fetal thymocyte proliferation during the CD48 to CD4+8+ transition in wild type, Rag I−/−, and Hoxa3, PaxI mutant mice, BMC Immunol., 2002, vol. 3, no. 12. doi: 10.1186/1471-2172-3-12

    Google Scholar 

  26. Sukseree, S., Mildner, M., Rossiter, H., et al., Autophagy in the thymic epithelium is dispensable for the development of self tolerance in a novel mouse model, PLos One, 2012, vol. 7, no. 6, p. e38933. doi: 10.1371/journal.pone.0038933

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Uddin, M.N., Nishio, N., Ito, S., et al., Autophagic activity in thymus and liver during aging, Age, 2012, vol. 34, no. 1, pp. 75–85.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Van Ewijk, W., Holländer, G., Terhorst, C., and Wang, B., Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets, Development, 2000, vol. 127, pp. 1583–1591.

    PubMed  Google Scholar 

  29. Youm, Y.-H., Yang, H., Sun, Y., et al., Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity, J. Biol. Chem., 2009, vol. 284, no. 11, pp. 7058–7077.

    Article  CAS  Google Scholar 

  30. Wang, X., Hsu, H.C., Wang, Y., et al., Phenotype of genetically regulated thymic involution in young BXD RI strains of mice, Scand. J. Immunol., 2006, vol. 64, no. 3, pp. 287–294.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Obukhova.

Additional information

Original Russian Text © L.A. Obukhova, V.B. Vais, L.E. Bakeeva, S.V. Sergeeva, N.G. Kolosova, 2013, published in Uspekhi Gerontologii, 2013, Vol. 26, No. 2, pp. 229–235.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obukhova, L.A., Vais, V.B., Bakeeva, L.E. et al. Structural and functional basis of accelerated involution of the thymus in OXYS rats. Adv Gerontol 4, 16–21 (2014). https://doi.org/10.1134/S2079057014010081

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057014010081

Keywords

Navigation