Skip to main content
Log in

The joined aging theory

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

In attempts to develop an instrument for prolonging life, mankind has created more than 300 theories of aging, each of which offers its own original cause of the age-dependent degradation. Among them, there are many logically perfect theories based on actual, repeatedly checked facts, but none of them have given a practically significant result. The theory presented here is based on the conception that life is a phenomenon that represents many interrelated physicochemical processes propelled by the energy of the mitochondrial bioenergetic machine. The gradual age-dependent degradation of all vital processes is caused by a programmed decrease in the bioenergetics level. This theory unites all existing aging theories that are built on authentic facts; the data accumulated in different fields of biology have served the basis to show that the fundamental phenomena that accompany the aging process, such as an increase in the level of reactive oxygen species (ROS), a decrease in the general level of protein synthesis, the limitation of cellular proliferation (Hayflick limit), a decrease in the efficiency of reparation mechanisms are caused by the attenuation of bioenergetics. Each of these phenomena in turn generates a number of harmful secondary processes. Almost all of the current theories are based on one of these destructive phenomena or their combination. Hence, each theory describes one side of the aging process that is initially caused by a programmed decrease in the bioenergetics level. The united theory makes it possible to understand the nature of the aging clock and explains the phenomenon of lifespan extension under the conditions of food restriction. Failures of attempts to develop a remedy for senescence are explained by the fact that the currently used manipulations with the separate secondary phenomena of bioenergetics attenuation are not capable of advancing longevity beyond the bounds of its natural duration, although they can improve the quality of life in old age. The only way to achieve unlimited healthy life is to find a way of managing bioenergetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D., Molecular Biology of the Cell, New York: Garland, 1994.

    Google Scholar 

  2. Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2003.

    Google Scholar 

  3. Anisimov, V.N., Priority fundamental gerontological studies: input of Russia, Usp. Gerontol., 2003, no. 12, pp. 9–27.

    Google Scholar 

  4. Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2008, vol. 1.

    Google Scholar 

  5. Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2008, vol. 2.

    Google Scholar 

  6. Anisimov, V.N. and Vinogradova, I.A., Light-dark conditions, melatonin and risk of cancer, Vopr. Onkol., 2006, vol. 52, no. 5, pp. 491–498.

    CAS  PubMed  Google Scholar 

  7. Westerhoff H.V. and van Dam, K., Thermodynamics and Control of Biological Free Energy Transduction, Amsterdam: Elsevier, 1987.

    Google Scholar 

  8. Golub, V.V., Hypothalamus as a possible modulator of the rates of development and aging of mammals, Russ. J. General Chem., 2009, vol. 80, no. 7, pp. 1425–1433.

    Article  CAS  Google Scholar 

  9. Goldsmith, T.C., The case for programmed mammal aging, Russ. J. Gen. Chem., 2009, vol. 80, no. 7, pp. 1434–1446.

    Article  CAS  Google Scholar 

  10. Myl’nikov, S.V., Genetic determination of aging rate in some lines of Drosophila melanogaster, Usp. Gerontol., 1997, no. 1, pp. 50–56.

    Google Scholar 

  11. Skulachev, V.P., Aging as atavistic program that can be eliminated, Vestn. ROS. Akad. Nauk, 2005, no. 5, pp. 831–843.

    Google Scholar 

  12. Skulachev, V.P., How to cancel the program of body aging?, Russ. J. General Chem., 2009, vol. 80, no. 7, pp. 1523–1541.

    Article  CAS  Google Scholar 

  13. Trubitsyn, A.G., The modified variant of mitochondrial theory of aging, Usp. Gerontol., 2006, no. 18, pp. 21–28.

    Google Scholar 

  14. Trubitsyn, A.G., Evolution mechanism of species-specific lifespan, Usp. Gerontol., 2006, no. 19, pp. 13–24.

    Google Scholar 

  15. Trubitsyn, A.G., Aging as a result of the implementation of the phenoptosis program, Russ. J. General Chem., 2009, vol. 80, no. 7, pp. 1490–1500.

    Article  CAS  Google Scholar 

  16. Trubitsyn, A.G., The mechanism of phenoptosis: 1. Age-dependent decrease of the overall rate of protein synthesis is caused by the programmed attenuation of bio-energetics, Usp. Gerontol., 2009, vol. 22, no. 2, pp. 223–227.

    CAS  Google Scholar 

  17. Trubitsyn, A.G., The mechanism of phenoptosis: 2. Hayflick limit is caused by the programs attenuation of bioenergetics, Usp. Gerontol., 2010, vol. 23, no. 2, pp. 168–174.

    Google Scholar 

  18. Ames B.N. and Liu J. Delaying the mitochondrial decay of aging with acetylcarnitine, Ann. N.Y. Acad. Sci., 2004, vol. 1033, pp. 108–116.

    Article  CAS  PubMed  Google Scholar 

  19. Anisimov, V.N., Alimova, I.N., Baturin, D.A., et al., Dose-dependent effect of melatonin on lifespan and spontaneous tumor incidence in female SHR mice, Exp. Gerontol., 2003, vol. 38, pp. 449–461.

    Article  CAS  PubMed  Google Scholar 

  20. Anisimov, V.N., Popovich, I.G., Zabezhinski, M.A., et al., Melatonin as antioxidant, geroprotector and anticarcinogen, Biochim. Biophys. Acta, 2006, vol. 1757, pp. 573–589.

    Article  CAS  PubMed  Google Scholar 

  21. Arai, M., Imai, H., Koumura, T., et al., Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cell, J. Biol. Chem., 1999, vol. 274, pp. 4924–4933.

    Article  CAS  PubMed  Google Scholar 

  22. Barrientos, A., Casademont, J., Rotig, A., et al., Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle, Biochem. Biophys. Res. Commun., 1996, vol. 229, pp. 536–539.

    Article  CAS  PubMed  Google Scholar 

  23. Bayreuther, K., Rodemann, P., Hommel, R., et al., Human skin fibroblasts in vitro differentiate along a terminal sell lineage, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 5112–5116.

    Article  CAS  PubMed  Google Scholar 

  24. Bjelakovic, G., Nikolova, D., Gluud, L.L., et al., Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases, Cochrane Database Syst. Rev., 2008, no. 2, art. no. CD 007176.

    Google Scholar 

  25. Blasco, M.A., Lee, H.W., Hande, M.P., et al., Telomere shortening and tumor formation by mouse cells lacking telomerase RNA, Cell, 1997, vol. 91, pp. 25–34.

    Article  CAS  PubMed  Google Scholar 

  26. Bonab, M.M., Alimoghaddam, K., Talebian, F., et al., Aging of mesenchymal stem cell in vitro, BMC Cell Biol., 2006, vol. 7, p. 14.

    Article  PubMed  CAS  Google Scholar 

  27. Brand, M.D., Uncoupling to survive? The role of mitochondrial inefficiency in aging, Exp. Gerontol., 2000, vol. 35, pp. 811–820.

    Article  CAS  PubMed  Google Scholar 

  28. Bredesen, D.E., The non-existing aging program: how does it work?, Aging Cell, 2004, vol. 3, pp. 255–259.

    Article  CAS  PubMed  Google Scholar 

  29. Brigelius-Flohe, R., Banning, A., and Schnurr, K., Selenium-dependent enzymes in endothelial cell function, Antioxid. Redox Signaling, 2003, vol. 5, pp. 205–215.

    Article  CAS  Google Scholar 

  30. Cerimele, F., Battle, T., Lynch, R., et al., Reactive oxygen species signaling and MAPK activation distinguish Epstein-Barr Virus (EBV)-positive versus EBVnegative Burkitt’s lymphoma, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 175–179.

    Article  CAS  PubMed  Google Scholar 

  31. Clemens, M.J., Regulation of eukaryotic protein synthesis by protein kinases that phosphorylate initiation factor eIF-2, Mol. Biol. Rep., 1994, vol. 19, pp. 201–210.

    Article  CAS  PubMed  Google Scholar 

  32. Clemens, M.J., Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis, Prog. Mol. Subcell. Biol., 2001, vol. 27, pp. 57–89.

    Article  CAS  PubMed  Google Scholar 

  33. Clemens, M.J. and Bommer, U.A., Translational control: the cancer connection, Int. J. Biochem. Cell Biol., 1999, vol. 31, pp. 1–23.

    Article  CAS  PubMed  Google Scholar 

  34. Clemens, M.J., Pain, V.M., Wong, S.T., and Henshaw, E.C., Phosphorylation inhibits guanine nucleotide exchange on eukaryotic initiation factor 2, Nature, 1982, vol. 296, pp. 93–95.

    Article  CAS  PubMed  Google Scholar 

  35. Clemens, M.J., Bushell, M., Jeffrey, I.W., et al., Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells, Cell Death Differ., 2000, vol. 7, pp. 603–615.

    Article  CAS  PubMed  Google Scholar 

  36. Demin, O.V., Kholodenko, B.N., and Skulachev, V.P., A model of generation in the complex III of the electron transport chain, Mol. Cell Biol., 1998, vol. 184, pp. 21–33.

    CAS  Google Scholar 

  37. Dunford, H.B., Oxidation of iron (II)/(III) by hydrogen peroxide: from aqua to enzyme, Coord. Chem. Rev., 2002, vols. 233–234, pp. 311–318.

    Article  Google Scholar 

  38. Finley, L.W.S., et al., Skeletal muscle transcriptional co-activator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 2931–2936.

    Article  CAS  PubMed  Google Scholar 

  39. Gems, D. and Doonan, R., Antioxidant defense and aging in C. elegans. Is the oxidative damage theory of aging wrong?, Cell Cycle, 2009, vol. 8, pp. 1681–1687.

    Article  CAS  PubMed  Google Scholar 

  40. Goldstein, S., Meyerstein, D., and Czapski, G., The Fenton reagents, Free Radicals Biol. Med., 1993, vol. 15, pp. 435–445.

    Article  CAS  Google Scholar 

  41. Grandison, R.C., Piper, M.D.W., and Partridge L., Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila, Nature, 2009, vol. 462, pp. 24–31.

    Article  CAS  Google Scholar 

  42. Greider, C.W. and Blackburn, E.H., Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 1985, vol. 43, pp. 405–413.

    Article  CAS  PubMed  Google Scholar 

  43. Halliwell, B. and Gutteridge, J.M.C., Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J., 1984, vol. 219, pp. 1–14.

    CAS  PubMed  Google Scholar 

  44. Harman, D., Aging: a theory based on free radical and radiation therapy, J. Gerontol., 1956, vol. 11, pp. 298–300.

    Article  CAS  PubMed  Google Scholar 

  45. Hasty, P. and Vijg, J., Genomic priorities in aging, Science, 2002, vol. 296, pp. 1250–1251.

    Article  CAS  PubMed  Google Scholar 

  46. Hayashi, J.I., Ohta, S., Kagawa, Y., et al., Nuclear but not mitochondrial genome involvement in human agerelated mitochondrial dysfunction. Functional integrity of mitochondrial DNA from aged subjects, J. Biol. Chem., 1994, vol. 269, pp. 6878–6883.

    CAS  PubMed  Google Scholar 

  47. Hayflick, L., Biological aging is no longer an unsolved problem, Ann. N.Y. Acad. Sci., 2007, vol. 1100, pp. 1–13.

    Article  CAS  PubMed  Google Scholar 

  48. Hayflick, L. and Moorhead, P.S., The serial cultivation of human diploid cell strains, Exp. Cell Res., 1961, vol. 25, pp. 585–621.

    Article  CAS  PubMed  Google Scholar 

  49. Herrera, E., Samper, E., Martin-Caballem, J., et al., Disease states associated with telomerase deficiency appear earlier in mice with short telomeres, EMBO J., 1999, vol. 18, pp. 2950–2960.

    Article  CAS  PubMed  Google Scholar 

  50. Ho, A.D., Wagner, W., and Mahlknecht, U., Stem cells and ageing, EMBO Rep., 2005, vol. 6, pp. S35–S38.

    Article  CAS  PubMed  Google Scholar 

  51. Holliday, R., Aging is no longer an unsolved problem in biology, Ann. N.Y. Acad. Sci., 2006, vol. 1067, pp. 1–9.

    Article  PubMed  Google Scholar 

  52. Hornsby, P.J., Cellular senescence and tissue aging in vivo, J. Gerontol. Biol. Sci., A, 2002, vol. 57, pp. B251–B256.

    Article  Google Scholar 

  53. Howes, R.M., The free radical fantasy. A panoply of paradoxes, Ann. N.Y. Acad. Sci., 2006, vol. 1067, pp. 22–26.

    Article  CAS  PubMed  Google Scholar 

  54. Hucull, J.H., Henshaw, E.S., and Young, D.A., Nucleotide diphosphate regulation of overall rates of protein biosynthesis acting at the level of initiation II, J. Biol. Chem., 1985, vol. 260, pp. 15585–15591.

    Google Scholar 

  55. Jo, S.H., Son, M.K., Koh, H.J., et al., Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase, J. Biol. Chem., 2001, vol. 276, pp. 16168–16176.

    Article  CAS  PubMed  Google Scholar 

  56. Jonas, S.K., Riley, P.A., and Willson, R.L., Hydrogen peroxide cytotoxicity, Biochem. J., 1989, vol. 264, pp. 651–655.

    CAS  PubMed  Google Scholar 

  57. Isobe, K., Ito, S., Hosaka, H., et al., Nuclear-recessive mutations of factors involved in mitochondrial translation are responsible for age-related respiration deficiency in human skin fibroblasts, J. Biol. Chem., 1998, vol. 273, pp. 4601–4606.

    Article  CAS  PubMed  Google Scholar 

  58. Isobe, K., Kishino, S., Inoue, K., et al., Identification of inheritance modes of mitochondrial diseases by introduction of pure nuclei from mtDNA-less HeLa cells to patient-derived fibroblasts, J. Biol. Chem., 1997, vol. 272, pp. 12606–12610.

    Article  CAS  PubMed  Google Scholar 

  59. Itahana, K., Campisi, J., Goberdhan, P., and Dimri, G.P., Mechanisms of cellular senescence in human and mouse cells, Biogerontology, 2004, vol. 5, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  60. Karasek, M., Melatonin, human aging, and age-related diseases, Exp. Gerontol., 2004, vol. 39, pp. 1723–1729.

    Article  CAS  PubMed  Google Scholar 

  61. Karasek, M., Does melatonin play a role in aging processes?, J. Physiol. Pharmacol., 2007, vol. 58, pp. 105–113.

    PubMed  Google Scholar 

  62. Kasper, G., Mao, L., Geissler, S., et al., Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton, Stem Cells, 2009, vol. 27, pp. 1288–1297.

    Article  CAS  PubMed  Google Scholar 

  63. Kenyon, C.J., The genetics of aging, Nature, 2010, vol. 464, pp. 504–512.

    Article  CAS  PubMed  Google Scholar 

  64. Kimball, S.R., Fabian, J.R., Pavitt, G.D., et al., Regulation of guanine nucleotide exchange through phosphorylation of eukaryotic initiation factor eIF2. Role of the α- and δ-subunits of eIF2B, J. Biol. Chem., 1998, vol. 273, pp. 12841–12845.

    Article  CAS  PubMed  Google Scholar 

  65. Kirkwood, T.B.L., Evolution of aging, Nature, 1977, vol. 270, pp. 301–304.

    Article  CAS  PubMed  Google Scholar 

  66. Kirkwood, T.B.L., Evolution of aging, Mech. Aging Dev., 2002, vol. 123, pp. 737–735.

    Article  PubMed  Google Scholar 

  67. Larrea, M.D., Liang, J., Da Silva, T., et al., Phosphorylation of p27kip1 regulates assembly and activation of cyclin D1-Cdk4, Mol. Cell Biol., 2008, vol. 28, pp. 4662–6472.

    Article  CAS  Google Scholar 

  68. Lee, H.W., Blasco, M.A., Gotlieb, G.J., et al., Essential role of mouse telomerase in highly proliferative organs, Nature, 1998, vol. 392, pp. 569–574.

    Article  CAS  PubMed  Google Scholar 

  69. Leof, E.B., Wharton, W., van Wyk, J.J., and Pledger, W., Epidermal growth factor (EGF) and somatomedin C regulate G1 progression in competent BALB/c-3T3 cells, Exp. Cell Res., 1982, vol. 141, pp. 107–115.

    Article  CAS  PubMed  Google Scholar 

  70. Lewin, M.H., Hume, R., Howie, A.F., et al., Thioredoxin reductase and cytoplasmic glutathione peroxidase activity in human fetal and neonatal liver, Biochem. Biophys. Acta, 2001, vol. 1526, pp. 237–241.

    Article  CAS  PubMed  Google Scholar 

  71. Lindahl, T., Karran, P., and Wood, R.D., DNA excision repair pathways, Curr. Opin. Genet. Dev., 1997, vol. 7, pp. 158–169.

    Article  CAS  PubMed  Google Scholar 

  72. Liu, R., Liu, W., Doctrow, S.R., and Baudry, M., Iron toxicity in organotypic cultures of hippocampal slices: role of reactive oxygen species, J. Neurochem., 2003, vol. 85, pp. 492–502.

    Article  CAS  PubMed  Google Scholar 

  73. Lloyd, R.V., Hanna, P.M., and Mason, R.P., The origin of the hydroxyl radical oxygen in the Fenton reaction, Free Radical Biol. Med., 1996, vol. 22, pp. 885–888.

    Article  Google Scholar 

  74. López-Lluch, G.N.H., et al., Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 6, pp. 1768–1773.

    Article  PubMed  CAS  Google Scholar 

  75. Medawar, P.B., An Unsolved Problem of Biology, London: Levis, 1952.

    Google Scholar 

  76. Medvedev, Z.A., An attempt at a rational classification of theories of aging, Biol. Rev., 1990, vol. 65, pp. 375–398.

    Article  CAS  PubMed  Google Scholar 

  77. Mendelsohn, S.L., Nordeen, S.K., and Young, D.A., Rapid changes in initiation-limited rates of protein synthesis in rat thymic lymphocytes correlate with energy charge, Biochem. Biophys. Res. Commun., 1977, vol. 79, pp. 53–60.

    Article  CAS  PubMed  Google Scholar 

  78. Meric, F. and Hunt, K.K., Translation initiation in cancer: a novel target for therapy, Mol. Cancer Ther., 2002, vol. 1, pp. 971–979.

    CAS  PubMed  Google Scholar 

  79. Montero, H., Rojas, M., Arias, C.F., and López, S., Rotavirus infection induces the phosphorylation of eif2α but prevents the formation of stress granules, J. Virol., 2008, vol. 82, pp. 1496–1504.

    Article  CAS  PubMed  Google Scholar 

  80. Morgan, D.O., Principles of Cdk regulation, Nature, 1995, vol. 374, pp. 131–134.

    Article  CAS  PubMed  Google Scholar 

  81. Nordberg, J. and Arner, E.S.J., Reactive oxygen species, antioxidants and the mammalian thioredoxin system, Free Radical Biol. Med., 2001, vol. 31, pp. 1287–1312.

    Article  CAS  Google Scholar 

  82. Pain, V.M., Initiation of protein synthesis in eukaryotic cells, Eur. J. Biochem., 1996, vol. 236, pp. 747–771.

    Article  CAS  PubMed  Google Scholar 

  83. Peschke, E., Melatonin, endocrine pancreas and diabetes, J. Pineal Res., 2008, vol. 44, pp. 26–40.

    CAS  PubMed  Google Scholar 

  84. Porteous, W.K., James, A.M., Sheard, P.W., et al., Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion, Eur. J. Biochem., 1998, vol. 257, pp. 192–201.

    Article  CAS  PubMed  Google Scholar 

  85. Rasmussen, U.F., Krustrup, P., Kjaer, M., and Rasmussen, H.N., Experimental evidence against the mitochondrial theory of aging. A study of isolated human skeletal muscle mitochondria, Exp. Gerontol., 2003, vol. 38, pp. 877–886.

    Article  CAS  PubMed  Google Scholar 

  86. Rattan, S.I.S., Synthesis, modifications, and turnover of proteins during aging, Exp. Gerontol., 1996, vol. 31, pp. 33–47.

    Article  CAS  PubMed  Google Scholar 

  87. Rattan, S.I.S., Theories of biological aging: genes, proteins, and free radicals, Free Radical Res., 2006, vol. 40, pp. 1230–1238.

    Article  CAS  Google Scholar 

  88. Rahimi, R.A. and Leoff, E.B., TGF-beta signaling: a tail of two responses, J. Cell. Biochem., 2007, vol. 102, pp. 593–608.

    Article  CAS  PubMed  Google Scholar 

  89. Reed, M.L., Penn, P.E., Li, Y., et al., Enhanced cell proliferation and biosynthesis mediate improved wound repair in reefed, caloric-restricted mice, Mech. Aging Dev., 1996, vol. 89, pp. 21–43.

    Article  CAS  PubMed  Google Scholar 

  90. Reppert, S.M. and Weaver, D.R., Molecular analysis of mammalian circadian rhythms, Ann. Rev. Physiol., 2001, vol. 63, pp. 647–676.

    Article  CAS  Google Scholar 

  91. Rhee, S.G., Redox signaling: hydrogen peroxide as intracellular messenger, Exp. Mol. Med., 1999, vol. 31, pp. 53–59.

    Article  CAS  PubMed  Google Scholar 

  92. Ritting, S.R., Brooks, K.M., Cristofalo, V.J., and Baserga, R., Expression of cell cycle dependent genes in young and senescent W1–38 fibroblasts, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 3316–3320.

    Article  Google Scholar 

  93. Robert, F., Kapp, L.D., Khan, S.N., et al., Initiation of protein synthesis by hepatitis C virus is refractory to reduced eIF2-GTP-met-RNAimet ternary complex availability, Mol. Biol. Cell, 2006, vol. 17, pp. 4632–4644.

    Article  CAS  PubMed  Google Scholar 

  94. Ryazanov, A.G. and Nefsky, B.S., Protein turnover plays a key role in aging, Mech. Aging Dev., 2002, vol. 123, pp. 207–213.

    Article  CAS  PubMed  Google Scholar 

  95. Scandalios, J.G., The rise of ROS, Trends Biochem. Sci., 2002, vol. 27, pp. 483–486.

    Article  CAS  PubMed  Google Scholar 

  96. Scandalios, J.G., Oxidative stress responses-what have genome-scale studies taught us?, Genome Biol., 2002, vol. 3, pp. 1019.1–1019.6.

    Article  Google Scholar 

  97. Sharpless, N.E. and DePinho, R.A., How stem cells age and why this makes us grow old, Nature Rev. Mol. Cell Biol., 2007, vol. 8, pp. 703–713.

    Article  CAS  Google Scholar 

  98. Sheaff, R.J., Gloudine, M., Gordon, M., et al., Cyclin E-CDK2 is regulator of p27, Gen. Dev., 1997, vol. 11, pp. 1464–1478.

    Article  CAS  Google Scholar 

  99. Sherr, C.J., G1 phase progression: cycling on cue, Cell, 1994, vol. 79, pp. 551–555.

    Article  CAS  PubMed  Google Scholar 

  100. Sherr, C.J., Cancer cell cycles, Science, 1996, vol. 274, pp. 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  101. Sherr, C.J., The Pezcoller lecture: cancer cell cycles revisited, Cancer Res., 2000, vol. 60, pp. 3689–3695.

    CAS  PubMed  Google Scholar 

  102. Sherr, C.J. and Roberts, J.M., Cdk inhibitors: positive and negative regulators of G1 phase progression, Gen. Dev., 1999, vol. 13, pp. 1501–1512.

    Article  CAS  Google Scholar 

  103. Sixma, T.K., DNA mismatch repair: MutS structures bound to mismatches, Curr. Opin. Struct. Biol., 2001, vol. 11, pp. 47–52.

    Article  CAS  PubMed  Google Scholar 

  104. Skulachev, V.P., Why are mitochondria involved in apoptosis? Permeability transition pore and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell, FEBS Lett., 1996, vol. 397, pp. 7–10.

    Article  CAS  PubMed  Google Scholar 

  105. Skulachev, V.P., The program death phenomena, aging, and the samurai law of biology, Exp. Gerontol., 2001, vol. 36, pp. 995–1024.

    Article  CAS  PubMed  Google Scholar 

  106. Toh, K.L., Basic science review on circadian rhythm biology and circadian sleep disorders, Ann. Acad. Med. Singapore, 2008, vol. 37, pp. 662–668.

    PubMed  Google Scholar 

  107. Tolando, R., Jovanovic, A., Brigelius-Flohe, R., et al., Reactive oxygen species and proinflammatory cytokine signaling in endothelial cells: effect of selenium supplementation, Free Radical Biol. Med., 2000, vol. 28, pp. 979–986.

    Article  CAS  Google Scholar 

  108. Trifunovic, A. and Larsson, N.G., Mitochondrial dysfunction as a cause of aging, J. Int. Med., 2008, vol. 263, pp. 167–178.

    Article  CAS  Google Scholar 

  109. Trubitsyn, A.G., Aging as a result of the implementation of the phenoptosis program, Russ. J. Gen. Chem., 2010, vol. 80, pp. 1490–1500.

    Article  CAS  Google Scholar 

  110. Trubitsyn, A.G., The mechanism of phenoptosis: 2. The Hayflick limit is caused by programmed decrease of the bioenergetics level, Adv. Gerontol., 2011, vol. 1, pp. 147–152.

    Article  Google Scholar 

  111. Trubitsyn, A.G., Bioenergetics theory of aging, in Bioenergetics, Clark, K., Ed., Rijeka: In Tech, 2012, pp. 63–94.

    Google Scholar 

  112. Vlach, J., Hennecke, S., and Amati, B., Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27kip1, EMBO J., 1997, vol. 6, pp. 5334–5344.

    Article  Google Scholar 

  113. Vogel, R., Wiesinger, H., Hamprecht, B., and Dringen, R., The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required, Neurosci. Lett., 1999, vol. 275, pp. 97–100.

    Article  CAS  PubMed  Google Scholar 

  114. Wei, Y.H., Lu, C.Y., Wei, C.Y., et al., Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impair antioxidant enzymes, Clin. J. Physiol., 2001, vol. 44, pp. 1–11.

    CAS  Google Scholar 

  115. Weisman, A., Essays upon Heredity and Kinder Biological Problems, Oxford: Clarendon Press, 1891, vol. 1.

    Google Scholar 

  116. Wolf, N.S., Perm, P.E., Jiang, D., et al., Caloric restriction: conservation of in vivo cellular replicative capacity accompanies life-span extension in mice, Exp. Cell Res., 1995, vol. 217, pp. 317–323.

    Article  CAS  PubMed  Google Scholar 

  117. Yao, Y.G., Ellison, F.M., McCoy, J.P., et al., Age-dependent accumulation of mtDNA mutations in murine hematopoietic stem cells is modulated by the nuclear genetic background, Human Mol. Genet., 2007, vol. 16, pp. 286–294.

    Article  CAS  Google Scholar 

  118. Yegorov, E.E. and Zelenin, A.V., Duration of senescent cell survival in vitro as a characteristic of organism longevity, an additional to the proliferative potential of fibroblast, FEBS Lett., 2003, vol. 541, pp. 6–10.

    Article  CAS  PubMed  Google Scholar 

  119. Yen, T.C., Chen, Y.S., King, K.L., et al., Liver mitochondrial respiratory functions decline with age, Biochem. Biophys. Res. Commun., 1989, vol. 165, pp. 994–1003.

    Article  Google Scholar 

  120. Young, D.A., Glucocorticoid action on rat thymus cells. Interrelationships between carbohydrate, protein, and adenine nucleotide metabolism and cortisol effects on these functions in vitro, J. Biol. Chem., 1969, vol. 244, pp. 2210–2217.

    CAS  PubMed  Google Scholar 

  121. Young, D.A., Glucocorticoid action on rat thymus cells. II. Interrelationships between ribonucleic acid and protein metabolism and between cortisol and substrate effects on these metabolic parameters in vitro, J. Biol. Chem., 1970, vol. 245, pp. 2747–2752.

    CAS  PubMed  Google Scholar 

  122. Yu, T.W. and Anderson, D., Reactive oxygen species-induced DNA damage and its modification: a chemical investigation, Mutat. Res., 1997, vol. 379, pp. 201–210.

    Article  CAS  PubMed  Google Scholar 

  123. Zimmerman, J.A., Malloy, V., Krajcik, R., and Orentreich, N., Nutritional control of aging, Exp. Gerontol., 2003, vol. 38, pp. 47–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Trubitsyn.

Additional information

Original Russian Text © A.G. Trubitsyn, 2012, published in Uspekhi Gerontologii, 2012, Vol. 25, No. 4, pp. 563–581.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trubitsyn, A.G. The joined aging theory. Adv Gerontol 3, 155–172 (2013). https://doi.org/10.1134/S2079057013030120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057013030120

Keywords

Navigation