Skip to main content

Role of oxidative stress in skin aging

Abstract

The review covers the literature that prove that the formation of ROS in aging overbalances the antioxidant defence system potential of the skin structure (horny layer, epidermis, and dermis). It has been shown that ROSs are involved in the pathogenesis of inflammatory processes and allergic responses in the skin. The role of ROS and antioxidant systems in the cell-mediated responses associated with the MAP kinase activity in the skin is discussed. Special attention is focused on exposure to ultraviolet radiation, which accounts for its genotoxic, immunosuppressive, and carcinogenic effects on skin.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Dubinina, E.E., Produkty metabolizma kisloroda v funktsional’noi aktivnosti kletok (The Products of Oxygen Metabolism in Functional Activity of the Cells), St. Petersburg: Med. Pressa, 2006.

    Google Scholar 

  2. 2.

    Athar, M., Oxidative Stress and Experimental Carcinogenesis, Indian. J. Exp. Biol., 2002, vol. 40, pp. 656–667.

    PubMed  CAS  Google Scholar 

  3. 3.

    Athar, M., Lloyd, J.R., Bickers, D.R., and Mukhtar, H., Malignant Conversion of UV Radiation and Chemically Induced Mouse Skin Benign Tumors by Free-Radical Generating Compounds, Carcinogenesis, 1989, vol. 10, pp. 1841–1845.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Aziz, M.H., Afaq, F., and Ahmad, N., Prevention of Ultraviolet-B Radiation Damage by Resveratol in Mouse Skin is Mediated via Modulation in Surviving, Photochem. Photobiol., 2005, vol. 81, pp. 25–31.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Bachelor, M.A. and Bowden, G.T., UVA-Mediated Activation of Signaling Pathways Involved in Skin Tumor Promotion and Progression, Semin. Cancer Biol., 2004, vol. 14, pp. 131–138.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Berlett, B.S. and Stadtman, E.R., Protein Oxidation in Aging, Disease, and Oxidative Stress, J. Biol. Chem., 1997, vol. 272, pp. 20313–20316.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Bickers, D.R. and Athar, M., Oxidative Stress in Pathogenesis of Skin Disease, J. Invest. Dermatol., 2006, vol. 126, pp. 2565–2575.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Black, H.S., ROS: A Step Closer to Elucidating Their Role in the Etiology of Light-Induced Skin Disorders, J. Invest. Dermatol., 2004, vol. 122, no. 6, pp. 1463–1470.

    Article  Google Scholar 

  9. 9.

    Black, H.S., Prooxidant and Antioxidant Mechanisms of BHT and Beta-Carotene in Photocarcinogenesis, Front. Biosci., 2002, vol. 7, pp. 1044–1052.

    Google Scholar 

  10. 10.

    Boldyrev, A.A., Significance of Reactive Oxygen Species for Neuronal Function, in Free Radicals, NO, and Inflammation, Molecular, Biochemical and Clinical Aspects, Tomasi, A., et al., Eds., IOS Press, 2003, pp. 1153–1169.

  11. 11.

    Briganti, S. and Picardo, M., Antioxidant Activity, Lipid Peroxidation, and Skin Disease. What’s New?, J. Europ. Dermatol. Venerol., 2003, vol. 17, pp. 663–669.

    Article  CAS  Google Scholar 

  12. 12.

    Callaghan, T.M. and Wilhelm, K.P., A Review of Ageing and an Examination of Clinical Methods in the Assessment of Ageing Skin, Part I: Cellular and Molecular Perspectives of Skin Ageing, Int. J. Cosmetic Sci., 2008, vol. 30, pp. 313–322.

    Article  CAS  Google Scholar 

  13. 13.

    Cals-Grierson, M.M. and Ormerod, A.D., Nitric Oxide Function in the Skin, Nitric Oxide, 2004, vol. 10, pp. 179–193.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Cerutti, P., Shah, G., Peskin, A., and Amstad, P., Oxidant Carcinogenesis and Antioxidant Defense, Ann. N.Y. Acad. Sci., 1992, vol. 663, pp. 158–166.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Chen, A. and Davis, B.H., UV Irradiation Activates JNK and Increases Alpha(I) Collagen Expression in Rat Hepatic Stellate Cells, J. Biol. Chem., 1999, vol. 274, pp. 158–164.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Chung, J.H., Kang, S., Varani, J., et al., Decreased Extracellular-Signal-Regulated Kinase and Decreased Stress-Activated MAP Kinase Activities in Aged Human Skin in vivo, J. Invest. Dermatol., vol. 115, no. 2, pp. 177–182.

  17. 17.

    Curtin, G.M., Hanausek, M., Walaszek, Z., et al., Short Term in vitro and in vivo Analyses for Assessing the Tumor-Promoting Potentials of Cigarette Smoke Condensates, Toxicol. Sci., 2004, vol. 81, pp. 14–25.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Dhar, A., Young, M.R., and Colburn, N.H., The Role of AP-1, NF-kappaB and ROS/NOS in Skin Carcinogenesis: The jB6 Model is Predictive, Mol. Cell. Biochem., 2002, vols. 234–235, pp. 185–193.

    PubMed  Article  Google Scholar 

  19. 19.

    De Gruiji, F.R., Photocarcinogenesis: UVA vs UVB: Singlet Oxygen, UVA, and Ozone, Methods Enzymol., 2000, vol. 319, pp. 359–366.

    Article  Google Scholar 

  20. 20.

    Dimon-Gadal, S., Gerbaud, P., Therond, P., et al., Increased Oxidative Damage to Fibroblasts in Skin with and without Lesions in Psoriasis, J. Invest. Dermatol., 2000, vol. 114, pp. 984–989.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Gum, R., Wang, H., Lengyel, E., et al., Regulation of 92 kDa Type IV Expression of the Jun Aminoterminal Kinase and the Extracellular Signal-Regulated Kinase-Dependent Signaling Cascades, Oncogene, 1997, vol. 14, pp. 1481–1493.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Hruza, L.I. and Pentland, A.P., Mechanisms of UV-Induced Inflammation, J. Invest. Dermatol., 1993, vol. 100, pp. S35–S41.

    Article  Google Scholar 

  23. 23.

    Huang, C.C., Wu, W.B., Fang, J.Y., et al., (−)-Epigallocatechin-3-Gallate, a Green Tea Polyphenol Is a Potent Agent Against UVB-Induced Damage in HaCaT Ceratinocytes, Molecules, 2007, vol. 12, pp. 1845–1858.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Jeanmaire, C., Danoux, L., and Pauly, G., Glycation during Human Dermal Intrinsic and Actinic Ageing: An in vivo and in vitro Model Study, Brit. J. Dermatol., 2001, vol. 45, pp. 10–18.

    Article  Google Scholar 

  25. 25.

    Katijar, S.K., Afaq, F., and Azizuddin, K., Inhibition of UFB-Induced Oxidative Stress-Mediated Phosphorylation of Mitogen-Activated Protein Kinase Signaling Pathways in Cultured Human Epidermal Keratinocytes by Green Tee Polyphenol (−)-Epigallocatechin-3-Gallate, Toxicol. Appl. Pharmacol., 2001, vol. 176, pp. 101–107.

    Article  Google Scholar 

  26. 26.

    Katiyar S.K., Agarwal R., Mukhtar H., Inhibition of Spontaneous and Photoenhanced Lipid Peroxidation in Mouse Epidermal Microsomes by Epicatechin Derivatives from Green, Cancer Lett., 1994, vol. 79, pp. 61–66.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Katiyar, S.K., Matsui, M.S., Elmets, C.A., et al., Polyphenolic Antioxidant (−)-Epigallocatechin-3-Gallate from Green Tea Reduces UVB-Induced Inflammatory Responses and Infiltration of Leucocytes in Human Skin, Photochem. Photobiol., 1999, vol. 69, pp. 148–153.

    PubMed  CAS  Google Scholar 

  28. 28.

    Kawakubo, Y., Nakamori, M., Schopf, E., and Ohkido, M., Acetylator Phenotype in Patients with p-Phenylendiamine Allergy, Dermatology, 1997, vol. 195, pp. 43–45.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Kidd, P., Th1/Th2 Balance: The Hypothesis, Its Limitations, and Implications for Health and Disease, Altern. Med. Rev., 2003, vol. 8, pp. 223–246.

    PubMed  Google Scholar 

  30. 30.

    Kim, A.L, Labasi, J.M., Zhu, Y., et al., Role of MAPK in UVB Induced Inflammatory Responses in the Skin of SKH-1 Hairless Mice, J. Invest. Dermatol., 2005, vol. 124, pp. 318–325.

    Article  Google Scholar 

  31. 31.

    Kinlen, L., Sheil, A., and Peta, J., Collaborative United Kingdom-Australia Study of Cancer in Patients Treated with Immunosuppressive Drugs, Brit. J. Med., 1979, pp. 1461–1466.

  32. 32.

    Kishida, K. and Klann, E., Sources and Targets of Reactive Oxygen Species in Synaptic Plasticity and Memory, Antiox. Redox Sign., 2007, vol. 9, pp. 233–244.

    Article  CAS  Google Scholar 

  33. 33.

    Leccia, M.T., Yaar, M., Allen, N., et al., Solar Simulated Irradiation Modulates Gene Expression and Activity of Antioxidant Enzymes in Cultured Dermal Fibroblasts, Exp. Dermatol., 2001, vol. 10, pp. 272–279.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Levine, R.L., Williams, J.A., Stadtman, E.A., and Shaster, E., Carbonyl Assays for Determination of Oxidatevely Modified Proteins, Meth. Enzymol., 1994, vol. 233, pp. 346–357.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Matos, T.J., Duarte, C.B., Goncalo, M., and Lopes, M.C., Role of Oxidative Stress in ERK and P38 MAPK Activation Induced by the Chemical Sensitizer DNFB in a Fetal Skin Dendrite Cell Line, J. Immunol. Cell. Biol., 2005, vol. 83, pp. 607–614.

    Article  CAS  Google Scholar 

  36. 36.

    Mittal, A., Elmets, C.A., and Katijar, S.K., Dietary Feeding of Proanthocyanidins from Grape Seeds Prevents Photocarcinogenesis in SKH-Hairless Mice: Relationship to Decreased Fat and Lipid Peroxidation, Carcinogenesis, 2003, vol. 24, no. 8, pp. 1379–1388.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Morley, N., Clifford, T., Salter, L., et al., The Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate and Green Tea Can Protect Human Cellular DNA from Ultraviolet and Visible Radiation-Induced Damage, Photoderm. Photoimmunol. Photomed., 2005, vol. 21, pp. 15–22.

    Article  CAS  Google Scholar 

  38. 38.

    Nakamura, Y., Golburn, N.H., and Ginhardt, T.D., Role of Reactive Oxygen in Tumor Promotion: Implication of Superoxide Anion in Promotion of Neoplastic Transformation in jB-6 Cells by TPA, Carcinogenesis, 1985, vol. 6, pp. 229–235.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Nichols, J.A. and Katiyar, S.K., Skin Photoprotection by Natural Polyphenols: Antiinflammatory, Antioxidant and DNA Repair Mechanisms, Arch. Dermatol. Res., 2010, vol. 302, no. 2, pp. 71–83.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Nishigori, C., Hattori, Y., and Toyokuni, S., Role of Reactive Oxygen Species in Skin Carcinogenesis, Antioxid. Redox. Sign., 2004, vol. 6, pp. 561–570.

    Article  CAS  Google Scholar 

  41. 41.

    O’Donovan, P., Perrett, C.M., Zhang, X., et al., Azathioprine and UVA Light Generate Mutagenic Oxidative Damage, Science, 2005, vol. 309, pp. 1871–1874.

    PubMed  Article  Google Scholar 

  42. 42.

    Parrish, J.A., Immunosupression, Skin Cancer, and Ultraviolet A Radiation, New Engl. J. Med., 2005, vol. 353, pp. 2712–2713.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Podhaisky, H.P., Riemschneider, S., and Wohrlab, W., UV Light and Oxidative Damage in the Skin, Pharmacie, 2002, vol. 57, pp. 30–33.

    CAS  Google Scholar 

  44. 44.

    Poswig, A., Wenk, J., Brenneisen, P., et al., Adaptive Antioxidant Response of Manganese-Superoxide Dismutase Following Repetitive UVA Irradiation, J. Invest. Dermatol., 1999, vol. 112, pp. 13–18.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Rattan, S.I., Theories of Biological Aging: Genes, Proteins, and Free Radicals, Free Rad. Res., 2006, vol. 40, no. 12, pp. 1230–1238.

    Article  CAS  Google Scholar 

  46. 46.

    Ryter, S.W. and Tyrell, R.M., The Hemosynthesis and Degradation Pathways: Role in Oxidant Sensitivity. Hemoxigenase Has Both Pro- and Antioxidant Properties, Free Rad. Biol. Med., vol. 28, pp. 289–309.

  47. 47.

    Sander, C.S., Chang, H., Hamm, F., et al., Role of Oxidative Stress and the Antioxidant Network in Cutaneous Carcinogenesis, Int. J. Dermatol., 2004, vol. 43, pp. 326–335.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Sander, C.S., Chang, H., Salzmann, S., et al., Photoaging is Associated with Protein Oxidation in Human Skin in vivo, J. Invest. Dermatol., 2002, vol. 118, pp. 619–625.

    Article  Google Scholar 

  49. 49.

    Scotto, J. and Fears, T.R., Skin Cancer Epidemiology: Research Needs, Natl. Cancer. Inst. Monogr., 1978, vol. 50, pp. 169–177.

    PubMed  Google Scholar 

  50. 50.

    Sharma, S.D., Meeran, S.M., and Katiyar, S.K., Dietary Grape Seed Proanthocyanidins Inhibit UVB-Induced Oxidative Stress and Activation of Mitogen-Activated Protein Kinases and Nuclear Factor-kB Signaling in vivo SKH Hairless Mice, Mol. Cancer. Ther., 2007, vol. 6, pp. 995–1005.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Squer, T.C., Oxidative Stress and Protein Degradation during Biological Aging, Exp. Gerontol., 2001, vol. 36, no. 9, pp. 1539–1550.

    Article  Google Scholar 

  52. 52.

    Svobodova, A., Psotova, J., and Walterova, D., Natural Phenolics in the Prevention of UV-Induced Skin Damage, A Review Biomed. Pap. Med. Univ. Palacky Olomouc Czech Republ., 2004, vol. 147, no. 2, pp. 137–145.

    Article  Google Scholar 

  53. 53.

    Tanaka, N., Tajima, S., Ishibashi, A., et al., Immunohistochemical Detection of Lipid Peroxidation Products, Protein Bound Acrolein and 4-Hydroxynonenal Protein Adducts, in Actinic Elastosis of Photodamaged Skin, Arch. Dermatol. Res., 2001, vol. 293, pp. 565–367.

    Google Scholar 

  54. 54.

    Thiele, J.J., Traber, M.G., Re, R., et al., Macromolecular Carbonyls in Human Stratum Corneum: A Biomarker for Environmental Oxidant Exposure?, FEBS Lett., 1998, vol. 422, pp. 403–406.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Thiele, J.J., Hsieh, S.N., Briviba, K., and Sies, H., Protein Oxidation in Human Stratum Corneum; Susceptibility of Ceratins to Oxidation in vitro and Presence of Ceratine Oxidation Gradient in vivo, J. Invest. Dermatol., 1999, vol. 113, pp. 335–339.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Urbach, F., Incidences of Nonmelanoma Skin Cancer, Dermatol. Clin., 1991, vol. 9, pp. 751–755.

    PubMed  CAS  Google Scholar 

  57. 57.

    Varani, J., Warner, R.L., Chung, J.H., et al., Retinol (Vitamin A) Stimulates Collagen Accumulation in Chronologically-Aged Human Skin in vivo, J. Invest. Dermatol., 2000, vol. 114, no. 3, pp. 480–486.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Vayalil, P.K., Elmets, C.A., and Katiyar, S.K., Treatment of Green Tea Polyphenols in Hydrophilic Cream Prevents UVB-Induced Oxidation of Lipids and Proteins, Depletion of Antioxidant Enzymes and Phosphorylation of MAPK Proteins in SKH-1 Hairless Mouse Skin, Carcinogenesis, 2003, vol. 24, pp. 927–936.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Verheji, M., Bose, R., Lin, X.H., et al., Requirement for Ceramide-Initiated SAPK/JNK Signaling in Stress-Induced Apoptosis, Nature, 1996, vol. 380, pp. 75–79.

    Article  Google Scholar 

  60. 60.

    Wang, S.Q., Setlow, R., and Berwick, M., Ultraviolet A and Melanoma: A Review, J. Amer. Acad. Dermatol., 2001, vol. 44, pp. 837–846.

    Article  CAS  Google Scholar 

  61. 61.

    Wenk, J., Brennissen, P., Meewes, C., et al., UV-Induced Oxidative Stress and Photoaging, in Oxidants and Antioxidants in Cutaneous Biology, Current Problems in Dermatology, Thiele, J. and Elsner, P., Eds., Basel: Karger, 2001, vol. 29, pp. 83–94.

    Google Scholar 

  62. 62.

    Xia, Z., Dickens, M., Raingeaud, J., et al., Opposing Effects of ERK and JNK-p38 MAP-Kinases on Apoptosis, Science, 1995, vol. 270, pp. 1326–1331.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. S. Kozina.

Additional information

Original Russian Text © L.S. Kozina, I.V. Borzova, V.A. Arutiunov, G.A. Ryzhak, 2012, published in Uspekhi Gerontologii, 2012, Vol. 25, No. 2, pp. 217–222.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kozina, L.S., Borzova, I.V., Arutiunov, V.A. et al. Role of oxidative stress in skin aging. Adv Gerontol 3, 18–22 (2013). https://doi.org/10.1134/S2079057013010086

Download citation

Keywords

  • oxidative stress
  • ROS
  • MAP kinases
  • skin antioxidant systems
  • fibroblasts
  • keratinocytes
  • carcinogenesis