Skip to main content
Log in

Features of Defect Structure and Photoluminescence of Nominally Pure LiNbO3 Crystals Grown from a Boron-Doped Charge

  • ELECTRONIC MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Features of the defect structure of nominally pure LiNbO3:B crystals grown by the Czochralski method from a charge of congruent composition containing 0.08 and 0.12 wt % of boron have been studied using X-ray diffraction and photoluminescence. The boron concentration in crystals is at the level of trace amounts of metallic impurities, amounting to ~10–4 wt %. It has been found that in LiNbO3:B crystals, the lengths of O–O, Me–O, and Me–Me (Me—Li, Nb) bonds of oxygen-octahedral MeO6 clusters responsible for the ferroelectric and nonlinear optical properties of the crystal exhibit a significantly different order of arrangement along the polar axis of Me cations, vacancies, and point defects NbLi compared to the bond lengths for a nominally pure congruent crystal. Photoluminescence spectra indicate that the concentration of NbLi defects and transition metals, which act as deep electron traps responsible for the photorefraction, is lower in the studied LiNbO3:B crystals compared to a congruent crystal. These differences are believed to be a result of changes in the properties of the boron-containing melt, such as the formation of stable complexes between niobium and transition metal cations by chemically active boron, as well as the localization of trace amounts of boron within tetrahedral О4 voids of the LiNbO3 crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Sidorov, N.V., Volk, T.R., Mavrin, B.N., and Kalinnikov, V.T., Niobat litiya: Defecty, fotorefraktsiya, kolebatel’nyi spectr, polyaritony (Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons), Moscow: Nauka, 2003.

  2. Kuz’minov, Yu.S., Elektroopticheskii i nelineinoopticheskii kristall niobata litiya (Electro-Optical and Nonlinear-Optical Lithium Niobate Crystal), Moscow: Nauka, 1987.

  3. Photorefractive Materials and Their Applications 1: Basic Effects, Günter, P. and Huignard, J.-P., Eds., New York: Springer-Verlag, 2006. https://doi.org/10.1007/b106782

  4. Lehnert, H., Boysen, H., Frey, F., Hewat, A., and Radaelli, P., A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3, Z. Kristallogr., 1997, vol. 212, pp. 712–719. https://doi.org/10.1524/zkri.1997.212.10.712

    Article  CAS  Google Scholar 

  5. Palatnikov, M.N., Sidorov, N.V., Makarova, O.V., and Biryukova, I.V., Fundamental’nye aspekty tekhnologii sil’no legirovannykh kristallov niobata litiya (Fundamental Aspects of the Technology of Heavily Doped Lithium Niobate Crystals), Apatity: Kola Sci. Centre Russ. Acad. Sci., 2017.

  6. Sidorov, N.V., Teplyakova, N.A., Makarova, O.V., Palatnikov, M.N., Titov, R.A., Manukovskaya, D.V., and Birukova, I.V., Boron influence on defect structure and properties of lithium niobate crystals, Crystals, 2021, vol. 11, pp. 458–490. https://doi.org/10.3390/cryst.1105045

    Article  CAS  Google Scholar 

  7. Huang, C., Wang, S., and Ye, N., Subsolidus phase relations and the crystallization region of LiNbO3 in the system Li2O–B2O3–Nb2O5, J. Alloys Compd., 2010, vol. 502, no. 1, pp. 211–214. https://doi.org/10.1016/j.jallcom.2010.04.146

    Article  CAS  Google Scholar 

  8. Yamada, A., Tamada, H., and Saitoh, M., LiNbO3 thin-film optical waveguide grown by liquid phase epitaxy using Li2O–B2O3 flux, Appl. Phys. Lett., 1992, vol. 61, no. 24, pp. 2848–2850. https://doi.org/10.1063/1.108053

    Article  CAS  Google Scholar 

  9. Yamada, A., Tamada, H., and Saitoh, M., Liquid phase epitaxial growth of LiNbO3 thin film using Li2O–B2O3 flux system, J. Cryst. Growth, 1993, vol. 132, nos. 1–2, pp. 48–60. https://doi.org/10.1016/0022-0248(93)90246-S

  10. Sidorov, N.V., Titov, R.A., Voskresenskiy, V.M., and Palatnikov, M.N., Localization of B3+ cations in the LiNbO3 crystal structure and its effect on the crystal properties, J. Struct. Chem., 2021, vol. 62, no. 2, pp. 221–229. https://doi.org/10.1134/S0022476621020050

    Article  CAS  Google Scholar 

  11. Lengyel, K., Péter, Á., Kovács, L., Corradi, G., Pálfa-vi, L, Hebling, J., Unferdorben, M., Dravecz, G., Hajdara, I., Szaller, Zs., and Polgár, K., Growth, defect structure, and THz application of stoichiometric lithium niobate, Appl. Phys. Rev., 2015, vol. 2, p. 040601. https://doi.org/10.1063/1.4929917

  12. Polgár, K., Péter, Á., Kovács, L., Corradi, G., and Szaller, Zs., Growth of stoichiometric LiNbO3 crystals by top seeded solution growth method, J. Cryst. Growth, 1997, vol. 177, nos. 3–4, pp. 211–216. https://doi.org/10.1016/S0022-0248(96)01098-6

  13. Balasanyan, R.N., Gabrielyan, V.T., and Kazaryan, L.M., Study of lithium niobate crystals grown from melt with an admixture of K2O, Dokl. Nats. Akad. Nauk Resp. Armeniya, Fiz., 2000, vol. 100, no. 2, pp. 134–140.

    Google Scholar 

  14. Balasanyan, R.N., Vartanyan E.S., Gabrielyan, V.T., and Kazaryan, L.M., USSR Inventor’s Certificate no. 845506, 1981. Open Publication of Formula February 27, 2000.

  15. Masloboeva, S.M., Kadyrova, G.I., and Arutyu-nyan, L.G., Synthesis of Nb2O5:B solid precursors and L-iNbO3:B batches and their phase compositions, Russ. J. Inorg. Chem., 2016, vol. 61, no. 4, pp. 412–419. https://doi.org/10.1134/S0036023616040148

    Article  CAS  Google Scholar 

  16. Elizarova, I.R. and Masloboeva, S.M., Composition and homogeneity of Nb2O5:B solid precursors and LiNbO3:B batches, Russ. J. Inorg. Chem., 2018, vol. 63, no. 2, pp. 239–244. https://doi.org/10.1134/S0036023618020055

    Article  CAS  Google Scholar 

  17. Abrahams, S.C., Reddy, J.M., and Bernstein, J.L., Ferroelectric lithium niobate. Single crystal X-ray diffraction study at 24°C, J. Phys. Chem. Solids, 1966, vol. 27, nos. 6–7, pp. 997–1012. https://doi.org/10.1016/0022-3697(66)90072-2

  18. Abrahams, S.C., Levinstein, H.J., and Reddy, J.M., Ferroelectric lithium niobate. Polycrystal X-ray diffraction study between 24 and 1200°C, J. Phys. Chem. Solids, 1966, vol. 27, nos. 6–7, pp. 1019–1026. https://doi.org/10.1016/0022-3697(66)90074-6

  19. Abrahams, S.C. and Marsh, P., Defect structure dependence on composition in lithium niobate, Acta Crystallogr., Sect. B: Struct. Sci., 1986, vol. 42, no. 1, pp. 61–68. https://doi.org/10.1107/S0108768186098567

    Article  Google Scholar 

  20. Sidorov, N.V., Smirnov, M.V., Teplyakova, N.A., and Palatnikov, M.N., Photoluminescence and particular features of the defect structure of congruent and near-stoichiometric lithium niobate crystals obtained using different technologies, Opt. Spectrosc., 2020, vol. 128, no. 5, pp. 635–641. https://doi.org/10.1134/S0030400X2005015X

    Article  CAS  Google Scholar 

  21. Li, Y., Li, L., Cheng, X., and Zhao, X., Microscopic properties of Mg in Li and Nb sites of LiNbO3 by first-principle hybrid functional: Formation and related optical properties, J. Phys. Chem. C, 2017, vol. 121, pp. 8968–8975. https://doi.org/10.1021/acs.jpcc.7b01274

    Article  CAS  Google Scholar 

  22. Blasse, G., The luminescence of closed-shell transition-metal complexes. New developments, in Luminescence and Energy Transfer. Structure and Bonding, Berlin–Heidelberg: Springer-Verlag, 1980, vol. 42, pp. 1–41. https://doi.org/10.1007/3-540-10395-3_1

  23. Krol, D.M., Blasse, G., and Powell, R.C., The influence of the Li/Nb ratio on the luminescence properties of LiNbO3, J. Chem. Phys., 1980, vol. 73, no. 1, pp. 163–166. https://doi.org/10.1063/1.439901

    Article  CAS  Google Scholar 

  24. Smirnov, M.V., Sidorov, N.V., and Palatnikov, M.N., Luminescence properties of non-stoichiometric lithium niobate crystals of various composition and genesis, Opt. Spektrosk., 2022, vol. 130, no. 1, pp. 171–183.

    Google Scholar 

  25. Akhmadullin, I.S., Golenishchev-Kutuzov, V.A., and Migachev, S.A., Electronic structure of deep centers in LiNbO3, Phys. Solid State, 1998, vol. 40, no. 6, pp. 1012–1018. https://doi.org/10.1134/1.1130478

    Article  Google Scholar 

  26. Wilkinson, A.P., Cheerham, A.K., and Jarman, R.H., The defect structure of congruently melting lithium niobate, J. Appl. Phys., 1993, vol. 74, no. 5, pp. 3080–3083. https://doi.org/10.1063/1.354572

    Article  CAS  Google Scholar 

  27. Koppitz, J., Schirmer, O.F., and Kuznetsov, A.I., Thermal dissociation of bipolarons in reduced undoped LiNbO3, Europhys. Lett., 1987, vol. 4, no. 9, pp. 1055–1059. https://doi.org/10.1209/0295-5075/4/9/017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sidorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Kadetova, A.V., Smirnov, M.V. et al. Features of Defect Structure and Photoluminescence of Nominally Pure LiNbO3 Crystals Grown from a Boron-Doped Charge. Inorg. Mater. Appl. Res. 14, 1228–1236 (2023). https://doi.org/10.1134/S2075113323050441

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050441

Keywords:

Navigation