Skip to main content
Log in

Study of the Conditions for Obtaining Precursors Intended for 3D Technologies from a Heat-Resistant Alloy Based on RuAl

  • PHYSICOCHEMICAL FOUNDATIONS OF DEVELOPMENT OF MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The article discusses the possibilities of preparing high-quality powder materials from heat-resistant light alloys based on refractory monoaluminides of nickel β-NiAl and ruthenium β-RuAl for the manufacture of compact samples/products of complex shape using additive technologies with minimal final machining. Additive technologies are based on the use of spherical precursor micropowders with a regulated granulometric composition, good fluidity, and an oxide-free surface. The possibilities of obtaining precursors from RuAl-based alloys by plasma spheroidization of powders obtained by crushing mixtures from scrap samples of alloys based on RuAl with various additives are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Skachkov, O.A., Pozharov, S.V., and Berezina, T.A., Treatment, structure, and properties of high temperature powder Fe–Cr–Al alloys, Steel Transl., 2010, vol. 40, no. 2, pp. 188–190.

    Article  Google Scholar 

  2. Skachkov, O.A., Krymov, E.A., Pozharov, S.V., and Goldovskii, V.N., High temperature constructional powder steel and alloys, Steel Transl., 2014, vol. 44, no. 6, pp. 474–475.

    Article  Google Scholar 

  3. Darolia, R., Ductility and fracture toughness issues related to implementation of NiAl for gas turbine applications, Intermetallics, 2000, vol. 8, pp. 1321–1327.

    Article  CAS  Google Scholar 

  4. Scheppe, F., Sahm, P.R., Hermann, W., Paul, U., and Preuhs, J., Nickel aluminides: A step toward industrial application, Mater. Sci. Eng., A, 2002, vols. 329–831, pp. 596–601.

  5. Frommeyer, G. and Rablbauer, R., High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies, Steel Res. Int., 2008, vol. 79, no. 7, pp. 507–512.

    Article  CAS  Google Scholar 

  6. Bochenek, K. and Basista, M., Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications, Prog. Aerosp. Sci., 2015, vol. 79, pp. 136–146.

    Article  Google Scholar 

  7. Liu, E., Jia, J., Bai, Y., Wang, W., and Gao, Y., Study on preparation and mechanical property of nanocrystalline NiAl intermetallic, Mater. Des., 2014, vol. 53, pp. 596–601.

    Article  CAS  Google Scholar 

  8. Wu, S., Wu, X., Wang, R., Liu, Q., and Gan, L., Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl, Intermetallics, 2014, vol. 55, pp. 108–117.

    Article  CAS  Google Scholar 

  9. Tryon, B., Pollock, T.M., Gigliotti, M.F.X., and Hemker, K., Thermal expansion behavior of ruthenium aluminides, Scr. Mater., 2004, vol. 50, no. 6, pp. 845–848.

    Article  CAS  Google Scholar 

  10. Mucklich, F., Ilic, N., and Woll, K., RuAl and its alloys, Part II: Mechanical properties, environmental resistance and applications, Intermetallics, 2008, vol. 16, pp. 593–608.

    Article  Google Scholar 

  11. Guitar, M.A., Moore, E.R., and Mucklich, F., The influence of impurities on the formation of protective aluminium oxides on RuAl thin films, J. Alloys Compd., 2014, vol. 594, pp. 165–170.

    Article  CAS  Google Scholar 

  12. Guitar, M.A., Aboulfadl, H., Pauly, C., Leibenguth, P., Migot, S., and Mucklich, F., Production of single-phase intermetallic films from Ru-Al multilayers, Surf. Coat. Technol., 2014, vol. 244, pp. 210–216.

    Article  CAS  Google Scholar 

  13. Guo, H., Li, D., Zheng, L., Gong, S., and Xu, H., Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200°C, Corros. Sci., 2014, vol. 88, pp. 197–208.

    Article  CAS  Google Scholar 

  14. Hea, J., Zhang, Z., Peng, H., Gong, S., and Guo, H., The role of Dy and Hf doping on oxidation behavior of two-phase (γ + β) Ni–Al alloys, Corros. Sci., 2015, vol. 98, pp. 699–707.

    Article  Google Scholar 

  15. Fan, Q.X., Peng, X., Yu, H.J., Jiang, S.M., Gong, J., and Sun, C., The isothermal and cyclic oxidation behaviour of two Co modified aluminide coatings at high temperature, Corros. Sci., 2014, vol. 84, pp. 42–53.

    Article  CAS  Google Scholar 

  16. Povarova, K.B., Drozdov, A.A., Kazanskaya, N.K., Morozov, A.E., and Antonova, A.V., Physicochemical approaches to designing NiAl-based alloys for high-temperature operation, Russ. Metall. (Metally), 2011, vol. 2011, pp. 209–220. https://doi.org/10.1134/S003602951103013X

    Article  Google Scholar 

  17. Raj, S.V., Locci, I.E., and Whittenberger, J.D., Development and evaluation of directionally-solidified NiAl/(Cr,Mo)-based eutectic alloys for airfoil applications, Proc. 3rd Int. Symp. on Structural and Intermetallics, Warrendale, PA, 2013, pp. 1–10.

  18. Frommeyer, G., Rablbauer, R., and Schafer, H.J., Elastic properties of B2-ordered NiAl and NiAl–X (Cr, Mo, W) alloys, Intermetallics, 2010, vol. 18, pp. 299–305.

    Article  CAS  Google Scholar 

  19. Liang, Y., Guo, J., Xie, Y., Zhou, L., and Hu, Z., High temperature compressive properties and room temperature fracture toughness of directionally solidified NiAl-based eutectic alloy, Mater. Des., 2009, vol. 30, pp. 2181–2185.

    Article  CAS  Google Scholar 

  20. Hu, L., Hu, W., Gottstein, G., Bogner, S., Hollad, S., and Bührig-Polaczek, A., Investigation into microstructure and mechanical properties of NiAl–Mo composites produced by directional solidification, Mater. Sci. Eng., A, 2012, vol. 539, pp. 211–222.

    Article  CAS  Google Scholar 

  21. Povarova, K.B. and Skachkov, O.A., Preparation, structure, and properties of Ni3Al and NiAl light powder alloys for aerospace, Mater. Sci. Forum, 2007, vols. 534–536, pp. 1585–1588.

  22. Skachkhov, O.A., Povarova, K.B., Drozdov, A.A., Makarevich, O.N., and Morozov, A.E., Effect of the preparation methods of NiAl powders on the structure and properties of NiAl alloys and NiAl–Y2O3 composites, Proc. of PM2010 World Congr., Florence, October 10–14, 2010, Florence: Fortezza da Basso Centre, 2010, vol. 5, pp. 344–351.

  23. Wolff, I.M. and Hill, P.J., Platinum metals-based intermetallics for high-temperature service, Platinum Met. Rev., 2000, vol. 44, no. 4, pp. 158–166.

    Article  CAS  Google Scholar 

  24. Povarova, K.B., Morozov, A.E., Padalko, A.G., and Drozdov, A.A., Structure and hot hardness of RuAl-based alloys produced by reactive sintering using hot isostatic pressing, Russ. Metall. (Metally), 2008, vol. 2008, pp. 155–158. https://doi.org/10.1134/S0036029508020122

    Article  Google Scholar 

  25. Gu, D.D., Meiners, W., Wissenbach, K., and Popra-we, R., Laser additive manufacturing of metallic components: Materials, processes and mechanisms, Int. Mater. Rev., 2012, vol. 57, no. 3, pp. 133–164.

    Article  CAS  Google Scholar 

  26. Quian, M., Metal powder for additive manufacturing, JOM, 2015, vol. 67, no. 3, pp. 536–537.

    Article  Google Scholar 

  27. Yang, L., Hsu, K., Baughman, B., Godfrey, D., Medina, F., Menon, M., and Wiener, S., Additive Manufacturing of Metals: The Technology, Materials, Design and Production, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-55128-9

    Book  Google Scholar 

  28. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., and Zhang, W., Additive manufacturing of metallic components: Process, structure and properties, Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.

    Article  CAS  Google Scholar 

  29. Logacheva, A.I., Gusakov, M.S., Sentyurina, Z.A., Logachev, I.A., and Kandyba, A.A., Manufacture of NiAl-based rods for plasma centrifugal spraying using mechanochemical synthesis, Russ. Metall. (Metally), 2017, vol. 2017, pp. 432–440. https://doi.org/10.1134/S003602951705007X

    Article  Google Scholar 

  30. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2017, vol. 4, no. 62, pp. 203–239.

    Article  Google Scholar 

  31. Martinov, D.A., Levashov, E.A., Kaplanskii, Yu.Yu., Kurbatkina, V.V., Patsera, E.I., Chupeeva, A.N., Gurskikh, A.V., Samokhin, A.V., and Fadeev, A.A., Advanced spherical powders of NiAl-based alloys and their application in additive technologies, Abstr. World Congr. on Powder Metallurgy (World PM-2018), Beijing, China, September 16–20, 2018, pp. 1721–1728.

  32. Kurbatkina, V.V., Patsera, E.I., Levashov, E.A., Kaplanskii, Yu.Yu., and Samokhin, A.V., Fabrication of narrow-fraction micropowders of NiAl-based refractory alloy compo NiAl-M5-31, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 4, pp. 235–243.

    Article  Google Scholar 

  33. Tsvetkov, Y.V., Samokhin, A.V., Alekseev, N.V., Fadeev, A.A., Sinaiskii, M.A., Levashov, E.A., and Kaplanskii, Yu.Yu., Plasma spheroidization of micropowders of a heat-resistant alloy based on nickel monoaluminide, Dokl. Chem., 2018, vol. 483, no. 2, pp. 312–317. https://doi.org/10.1134/S0012500818120030

    Article  CAS  Google Scholar 

  34. Povarova, K.B., Kazanskaya, N.K., Drozdov, A.A., Bannykh, I.O., and Morozov, A.E., Structure and properties of alloyed cast alloys based on RuAl, Metally, 2004, no. 6, pp. 91–94.

  35. Povarova, K.B., Morozov, A.E., Drozdov, A.A., Antonova, A.V., and Bulakhtina, M.A., Heat-resistant RuAl-based alloys: Part II. Powder alloys—preparation via reaction sintering, Inorg. Mater.: Appl. Res., 2021, vol. 12, no. 5, pp. 1125–1138. https://doi.org/10.1134/S2075113321050312

    Article  Google Scholar 

  36. Povarova, K.B., Morozov, A.E., Drozdov, A.A., Antonova, A.V., and Bulakhtina, M.A., Heat-resistant RuAl-based alloys: III. Powder alloys—mechanical alloying, Inorg. Mater.: Appl. Res., 2022, vol. 13, no. 2, pp. 294–305. https://doi.org/10.1134/S2075113322020344

    Article  Google Scholar 

  37. Dorofeev, A.A., Samokhin, A.V., Fadeev, A.A., Alekseev, N.V., Sinaiskii, M.A., Litvinova, I.S., and Zavertyaev, I.D., Investigation of the granulation process of the W–Ni–Fe system nanopowder by spray drying, Fiz. Khim. Obrab. Mater., 2022, no. 6, pp. 54–69.

  38. Samokhin, A.V., Fadeev, A.A., Alekseev, N.V., Sinaysky, M.A., Sufiyarov, V.Sh., Borisov, E.V., Korzni-kov, O.V., Fedina, T.V., Vodovozova, G.S., and Barysh-kov, S.V., Spheroidization of Fe-based powders in plasma jet of DC arc plasma torch and application of these powders in selective laser melting, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 3, pp. 579–585. https://doi.org/10.1134/S2075113320030417

    Article  Google Scholar 

  39. Lutterotti, L. and Scardi, P., Simultaneous structure and size-strain refinement by the Rietveld method, J. Appl. Crystallogr., 1990, vol. 23, pp. 246–252.

    Article  CAS  Google Scholar 

  40. Levashov, E.A., Kaplanskii, Yu.Yu., Patsera, E.I., Loginov, P.A., Samokhin, A.V., Martynov, D.A., and Mazalov, A.B., NiAl-based heat resistant alloys and their application in additive technologies, Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Aktual’nye problemy poroshkovogo materialovedeniya, posvyashchennaya 85-letiyu so dnya rozhdeniya akademika V.N. Antsiferova, Perm’, November 26–28, 2018 (Proc. Int. Sci.-Tech. Conf. “Actual Problems of Powder Materials Science” Dedicated to the 85th Anniversary of Academician V.N. Antsiferov), Perm: Perm Natl. Res. Polytech. Univ., 2018, pp. 38–42.

  41. Gao, R., Pen, H., Guo, H., and Chen, B., An innovative way to fabricate γ-TiAl blades and their failure mechanisms under thermal shock, Scr. Mater., 2021, vol. 203, p. 114092.

  42. Huang, D., Tan, Q., Zhou, Y., Yin, Y., Wang, F., Wu, T., Yang, X., Fan, Z., Liu, Y., Zhang, J., Huang, H., Yan, M., and Zhang, M.X., The significant impact of grain refiner on γ-TiAl intermetallic fabricated by laser-based additive manufacturing, Addit. Manuf., 2021, vol. 46, p. 102172.

  43. Rittinghaus, S.-K. and Wilms, M.B., Oxide dispersion strengthening of γ-TiAl by laser additive manufacturing, J. Alloys Compd., 2019, vol. 804, pp. 457–460.

    Article  CAS  Google Scholar 

  44. Liu, Z., Zhu, X., and Zhang, Y., Effect of annealing treatment on microstructure and tensile properties of Ti–48Al–2Cr–5Nb alloy fabricated by laser additive manufacturing, Opt. Laser Technol., 2022, vol. 155, p. 108412.

  45. Liu, Z., Ma, R., Xu, G., Wang, W., and Liu, J., Laser additive manufacturing of bimetallic structure from Ti–6Al–4V to Ti–48Al–2Cr–2Nb via vanadium interlayer, Mater. Lett., 2020, vol. 263, p. 127210.

  46. Ning, H., Wang, D., Zhao, J., Wang, B., and Liu, G., Fabrication and joining of NiAl and TiAl intermetallics by additive sintering, Mater. Sci. Eng., A, 2022, vol. 849, p. 143493.

Download references

Funding

This work was carried out according to the state assignment (project no. 075-01176-23-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Povarova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povarova, K.B., Drozdov, A.A., Samokhin, A.V. et al. Study of the Conditions for Obtaining Precursors Intended for 3D Technologies from a Heat-Resistant Alloy Based on RuAl. Inorg. Mater. Appl. Res. 14, 1186–1197 (2023). https://doi.org/10.1134/S2075113323050398

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050398

Keywords:

Navigation