Skip to main content
Log in

Physicochemical, Structural, and Surface Properties of Silicon Dioxide Produced from Mineral Raw Materials

  • MATERIALS FOR HUMAN LIFE SUPPORT AND ENVIRONMENTAL PROTECTION
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—

Samples of amorphous silicon dioxide (SiO2) were obtained by acid decomposition of mineral raw materials (nepheline). Their physicochemical, acid–base, structural, and surface properties were studied by chemical analysis, potentiometric titration, and by the methods of Parks, Brunauer–Emmett–Taylor (BET), Barrett–Joyner–Halenda (BJH), and others. It was determined that the obtained SiO2 samples are almost identical to pyrogenic amorphous silicon dioxide produced from reactive raw materials (pharmaceutical drug Polisorb MP) in content of impurities, pH of the aqueous extract, and pH values of the isoionic point and the zero-charge point and have larger values of specific external surface area and specific pore volume (by a factor of 1.1–1.9 and ~1.4, respectively). Based on the found values of the specific capacity of the adsorption monolayer of the surface of the SiO2 samples and the Gibbs free energy change of sorption (ΔG0), it was concluded that the method of their preparation does not significantly affect the physicochemical properties of their surfaces and the mechanism of nitrogen sorption. On the basis of the results obtained, it was assumed that silicon dioxide produced by acid processing of mineral raw materials is promising as an enterosorbent in therapeutic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Meditsinskaya khimiya i klinicheskoe primenenie dioksida kremniya (Medical Chemistry and Clinical Applications of Silica), Chuiko, A.A., Ed., Kiev: Naukova Dumka, 2003.

    Google Scholar 

  2. Enterosorbtsiya (Enterosorption), Belyakov, N.A., Ed., Leningrad: Center Sorp. Technol., 1991.

    Google Scholar 

  3. Hamdani, K. and Cheng, K.L., Adsorption of biochemically significant phosphates on silica, Colloids Surf., 1992, vol. 63, pp. 29–31.

    Article  CAS  Google Scholar 

  4. Harley, J.D. and Margolis, J., Hemolytic activity of colloidal silica, Nature, 1961, vol. 189, pp. 1010–1011.

    Article  CAS  PubMed  Google Scholar 

  5. Kalev, O.F., Korobkin, A.V., and Zakharova, M.N., Polysorb MP for enteropathy and manifestations of chemotherapy toxicity in patients with acute myeloblastic leukemia, Vrach, 2007, no. 10, pp. 46–48.

  6. Piskun, R.P., Pentyuk, A.A., Serkova, V.K., Pole-sya, T.L., and Savitskii, E.A., Enterosorbents in the treatment of atherosclerosis, Eksp. Klin. Farmakol., 1998, vol. 61, no. 2, pp. 72–74.

    Google Scholar 

  7. Men’shikova, S.V., Ketova, G.G., and Popilov, M.A., Under-reported properties of polisorb, Toksikologiya, 2018, no. 1 (59), pp. 32–34.

  8. Zaguzin, A.S., Romanenko, A.V., and Bukhtiyaro-va, M.V., Synthesis of aluminum oxides with controlled textural and strength parameters, Russ. J. Appl. Chem., 2020, vol. 93, pp. 1115–1125. https://doi.org/10.1134/S1070427220080029

    Article  CAS  Google Scholar 

  9. Kuznetsova, T.F. and Eremenko, S.I., Synthesis of aerogel-type mesoporous silica, Colloid J., 2014, vol. 76, no. 3, pp. 327–333. https://doi.org/10.1134/S1061933X14030089

    Article  CAS  Google Scholar 

  10. Markelov, D.A., Nitsak, O.V., and Gerashchenko, I.I., Comparative study of the adsorption activity of medicinal sorbents, Pharm. Chem. J., 2008, vol. 42, no. 7, pp. 405–408.

    Article  CAS  Google Scholar 

  11. Reshetnikov, V.I., Evaluation of the adsorption capacity of enterosorbents and related medicinal preparations, Pharm. Chem. J., 2003, vol. 37, no. 5, pp. 246–251.

    Article  CAS  Google Scholar 

  12. https://corporate.evonik.com/en/products-and-solutions/search-our-products. Accessed November 18, 2022.

  13. Instruktsiya po meditsinskomu primeneniyu lekarstvennogo preparata “Polisorb PM,” Registratsionnyi nomer PN001140/01 (Instructions for Medical Use of the Drug “Polysorb PM,” Registration number PN001140/01). https://www.polisorb.com/ru/polisorb/. Accessed November 18, 2022.

  14. Zakharov, D.V., Zakharov, K.V., Matveev, V.A., and Maiorov, D.V., RF Patent 2179527, Byull. Izobret., 2002, no. 5.

  15. Zakharov, D.V., Zakharov, K.V., Matveev, V.A., and Maiorov, D.V., RF Patent 2179153, Byull. Izobret., 2002, no. 4.

  16. GOST (State Standard) 27753.3-88: Greenhouse Grounds. Method for Determination of Water Extract pH.

  17. Ikonnikova, K.V., Ikonnikova, L.F., Minakova, T.S., and Sarkisov, Yu.S., Teoriya i praktika opredeleniya kislotnoosnovnykh svoistv poverkhnosti tverdykh tel metodom pN-metrii (Theory and Practice of Determining the Acid-Base Properties of Solid Surfaces by pH-Metry), Tomsk: Tomsk Polytech. Univ., 2014.

  18. Parks, G.A. and de Bruyn, P.L., The zero point of charge of oxides, J. Phys. Chem., 1962, vol. 66, no. 6, pp. 967–973.

    Article  CAS  Google Scholar 

  19. Kamaltdinov, M.R., Zaitseva, N.V., and Shur, P.Z., Numerical modeling of acidity distribution in antroduodenum aimed at identifying anomalous zones at consuming drinks with different pH level, Anal. Riska Zdorov., 2017, no. 1, pp. 38–46.

  20. Trusov, P.V., Zaitseva, N.V., and Kamaltdinov, M.R., Simulation of digestion processes in consideration of functional disorders in a human organism: Conceptual and mathematical formulations, model structure, Russ. J. Biomech., 2013, vol. 17, no. 4 (62), pp. 60–74. http://vestnik.pstu.ru/biomech/archives/?id=&folder_id=2880

  21. Gmurman, V.E., Teoriya veroyatnostei i matematicheskaya statistika: Uchebnoe posobie dlya vuzov (Probability Theory and Mathematical Statistics: Manual for Higher Education Institutions), Moscow: Vysshaya Shkola, 2004.

  22. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

  23. Yakovleva, N.V., Study of the porous characteristics of nanocatalysts based on aluminum oxide and intermetallic compounds of nickel-aluminum, Vopr. Materialoved., 2013, no. 1 (73), pp. 95–101.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Mayorov.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayorov, D.V., Velyaev, Y.O. Physicochemical, Structural, and Surface Properties of Silicon Dioxide Produced from Mineral Raw Materials. Inorg. Mater. Appl. Res. 14, 1263–1269 (2023). https://doi.org/10.1134/S2075113323050258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050258

Keywords:

Navigation