Skip to main content
Log in

Welding of High-Nitrogen Austenitic Steels (Review)

  • PHYSICOCHEMICAL FOUNDATIONS OF DEVELOPMENT OF MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—

Alloying with nitrogen allows to substantially increase the strength of steels, especially of the austenitic steels, in which the equilibrium nitrogen content can reach 0.4–0.7 wt% depending on their chemical composition. Nitrogen stabilizes austenite and enhances its corrosion and wear resistance. For this reason, nitrogen-containing austenitic steels are advantageous structural materials, in particular, for heavy loaded welded structures. However, wrong choice of the welding method, regime, or filler for high-nitrogen steels can cause critical defects such as pores and cracks in the welded joints and substantially decrease their mechanical properties and corrosion resistance compared to those of the base metal. One hundred literature sources have been considered for the analysis of welding types and methods for austenitic steels containing ≥0.4 wt % nitrogen, the criteria for their weldability, and the causes for potential negative phenomena occurring upon their welding. For such steels, information is provided on the welding filler materials as well as on the modes and parameters of the welding process (supplied heat, presence/absence of a protective atmosphere, its composition, etc.). The structure, phase composition, and properties of the resulting welded joints are considered. The examples are given on the effect of the subsequent processing of welded joints (heat treatment and thermal deformation processing for the elimination of the resulting distortion) on their basic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Berns, H., Manufacture and application of high nitrogen steels, ISIJ Int., 1996, vol. 36, no. 7, pp. 909–914. https://doi.org/10.2355/isijinternational.36.909

    Article  CAS  Google Scholar 

  2. Simmons, J.W., Overview: High-nitrogen alloying of stainless steels, Mater. Sci. Eng., A, 1996, vol. 207, pp. 159–169.

    Article  Google Scholar 

  3. Foct, J., Future developments and applications of nitrogen-bearing steels and stainless steels, Sadhana, 2003, vol. 28, nos. 3–4, pp. 731–737.

  4. Speidel, M.O., Nitrogen containing austenitic stainless steels, Mater. Sci. Eng. Technol., 2006, vol. 37, no. 10, pp. 875–880. https://doi.org/10.1002/mawe.200600068

    Article  CAS  Google Scholar 

  5. Lo, K.H., Shek, C.H., and Lai, J.K.L., Recent developments in stainless steels, Mater. Sci. Eng., R, 2009, vol. 65, pp. 39–104. https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  6. Kostina, M.V., Bannykh, O.A., Blinov, V.M., and Dymov, A.V., Nitrogen-alloyed chromium corrosion-resistant steels of a new generation, Materialovedenie, 2001, no. 2, pp. 35–44.

  7. Speidel, M.O., Foct, J., and Hendry, A., Properties and applications of high nitrogen steels, Proc. 1st Int. Conf. on High Nitrogen Steels (HNS 88), Lille, France, May 18–20, 1988, London: Inst. Met., 1989, pp. 92–96.

  8. Uggowitzer, P.J., Magdowski, R., and Speidel, M.O., Properties and new development of high nitrogen austenitic stainless steels, J. Innovation Stainless Steel, 1993, pp. 359–372.

    Google Scholar 

  9. Simmons, J.W., Strain hardening and plastic flow properties of nitrogen-alloyed Fe–17Cr–(8–10)Mn–5Ni austenitic stainless steels, Acta Mater., 1997, vol. 45, no. 6, pp. 2467–2475.

    Article  CAS  Google Scholar 

  10. Werner, E., Solid solution and grain size hardening of nitrogen-alloyed austenitic steels, Mater. Sci. Eng., A, 1988, vol. 101, pp. 93–98.

    CAS  Google Scholar 

  11. Sedriks, A.J., Effects of alloy composition and microstructure on the passivity of stainless steels, Corrosion, 1986, vol. 42, no. 7, pp. 376–389.

    Article  CAS  Google Scholar 

  12. Bannykh, O.A., Blinov, V.M., and Kostina, M.V., Structural high-nitrogen corrosion-resistant austenitic and martensitic steels, in Sbornik nauchnykh trudov “Institut metallurgii i materialovedeniya im. A.A. Baikova RAN–70 let” (Collection of Scientific Works “A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences–70th Anniversary”), Moscow: Interkontakt Nauka, 2008, pp. 122–135.

    Google Scholar 

  13. Gorynin, I.V., Malyshevskii, V.A., Kalinin, G.Yu., Mushnikova, S.Yu., Bannykh, O.A., Blinov, V.M., and Kostina, M.V., Corrosion-resistant high-strength nitrogen steels, Vopr. Materialoved., 2009, no. 3 (59), pp. 7–16.

  14. Bannykh, O.A., Blinov, V.M., Kostina, M.V., Blinov, E.V., and Muradyan, S.O., On the possibility of using austenitic nitrogenous steels in the Russian valve industry, Armaturostroenie, 2014, no. 89, pp. 67–76.

  15. Naumenko, V.V., Shlyamnev, A.P., and Filippov, G.A., Nitrogen in austenitic stainless steels of different alloying systems, Metallurg, 2011, no. 6, pp. 46–53.

  16. Harzenmoser, M., Welding of high nitrogen steels, Mater. Manuf. Processes, 2004, vol. 19, no. 1, pp. 75–86. https://doi.org/10.1081/AMP-120027503

    Article  CAS  Google Scholar 

  17. Kamiya, O., Chen, Z.W., and Kikuchi, Y., Microporosity formation in partially melted zone during welding of high nitrogen austenitic stainless steels, J. Mater. Sci., 2002, vol. 7, no. 12, pp. 2475–2481.

    Article  Google Scholar 

  18. Kokawa, H., Nitrogen absorption and desorption by steels during arc and laser welding, Weld. Int., 2004, vol. 18, no. 4, pp. 277–287.

    Article  Google Scholar 

  19. Du Toit, M. and Pistorius, P.C., Nitrogen control during the autogenous ARC welding of stainless steel, Weld. World, 2003, vol. 47, nos. 9–10, pp. 30–43.

  20. GOST (State Standard) 19521-74: Welding of Metals. Classification. GOST (State Standard) R ISO 857-1-2009: Welding and Allied Processes. Vocabulary. Part 1. Metal Welding Processes. Terms and Definitions. EN 1792:2003: Welding–Multilingual List of Terms for Welding and Related Processes.

  21. ISO/TR 581:2005: Weldability–Metallic Materials–General Principles.

  22. Frolov, V.V., Teoreticheskie osnovy svarki (Theoretical Bases of Welding), Moscow: Vysshaya Shkola, 1999.

  23. Zhao, L., Tian, Z., and Peng, Y., Porosity and nitrogen content of weld metal in laser welding of high nitrogen austenitic stainless steel, ISIJ Int., 2007, vol. 47, pp. 1772–1775.

    Article  CAS  Google Scholar 

  24. Dong, W., Kokawa, H., Tsukamoto, S., and Sato, Y.S., Nitrogen desorption by high-nitrogen steel weld metal during CO2 laser welding, Metall. Mater. Trans. B, 2005, vol. 36, pp. 677–681.

    Article  Google Scholar 

  25. Zhao, L., Tian, Z.L., and Peng, Y., Control of nitrogen content and porosity in gas tungsten arc welding of high nitrogen steel, Sci. Technol. Weld. Joining, 2009, vol. 14, no. 1, pp. 87–91.

    Article  CAS  Google Scholar 

  26. EN 1792:2003: Welding–Multilingual List of Terms for Welding and Related Processes.

  27. GOST (State Standard) R ISO 17659-2009: Welding. Multilingual Terms for Welded Joints.

  28. Mohammed, R., Srinivasa Rao, K., and Madhusudhan Reddy, G., Effect of microstructure on stress corrosion cracking behaviour of high nitrogen stainless steel gas tungsten arc welds, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 330, p. 012015. https://doi.org/10.1088/1757-899X/330/1/012015

  29. Holmberg, B., Progress on welding of high nitrogen alloyed austenitic stainless steels, Weld. World, 2002, vol. 46, nos. 1–2, pp. 3–9.

  30. Balitskii, A.I., Kostyuk, I.F., and Krokhmal’nyi, O.A., Physical and mechanical heterogeneity of welded joints of high-nitrogen chromium-manganese steels and their corrosion resistance, Avtomat. Svarka, 2003, no. 2, pp. 28–31.

  31. Mohammed, R., Madhusudhan Reddy, G., and Srinivasa Rao, K. Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel, Def. Technol., 2015, vol. 11, no. 3, pp. 237–243.

    Article  Google Scholar 

  32. Brooks, J.A., Weldability of high N, high Mn austenitic stainless steel, Weld. Res. Suppl., 1974, pp. 189–195.

  33. Suutala, N., Takalo, T., and Moisio, T., Single-phase ferritic solidification in austenitic-ferritic stainless steel welds, Metall. Trans. A, 1979, vol. 10, no. 8, pp. 1183–1190.

    Article  Google Scholar 

  34. Nishimoto, K. and Mori, H., Hot cracking susceptibility in laser weld metal of high nitrogen stainless steels, influence of nitrogen and heat input, Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 231–240.

    Article  CAS  Google Scholar 

  35. Kujanpaa, V.P., David, S.A., and White, C.L., Formation of hot cracks in austenitic stainless steel welds—solidification cracking, Weld. Res. Suppl., 1986, no. 8, pp. 203–212.

  36. Shorshorov, M.Kh., Erokhin, A.A., Chernyshova, T.A., et al., Goryachie treshchiny pri svarke zharoprochnykh splavov (Hot Cracks in Welding of Heat-Resistant Alloys), Moscow: Mashinostroenie, 1973.

  37. Blinov, V.M., Lukin, E.I., Blinov, E.V., and Samoilova, M.A., Tensile fracture of the welded joints of austenitic high-nitrogen 05Kh22AG16N8M steel with various nitrogen contents, Russ. Metall. (Metally), 2021, vol. 2021, pp. 1299–1303. https://doi.org/10.1134/S0036029521100074

    Article  Google Scholar 

  38. Trevisan, R.E., Braga, E., and Fals, H.C., Effects of nitrogen and pulsed mean welding current in AISI 316 austenitic steel solidification cracks, Weld. Int., 2003, vol. 17, no. 4, pp. 298–302.

    Article  Google Scholar 

  39. Medovar, B.I., Svarka khromonikelevykh austenitnykh stalei (Welding of Chromium-Nickel Austenitic Steels), Moscow: Mashgiz, 1958.

  40. Borland, J.C. and Younger, R.N., Some aspects of cracking in welded Cr–Ni austenitic steels, Br. Weld. J., 1960, vol. 7, pp. 22–59.

    CAS  Google Scholar 

  41. Hazra, M., Srinivasa Rao, K., and Madhusudhan Reddy, G., Friction welding of a nickel free high nitrogen steel: Influence of forge force on microstructure, mechanical properties and pitting corrosion resistance, J. Mater. Res. Technol., 2014, vol. 3, no. 1, pp. 90–100.

    Article  CAS  Google Scholar 

  42. Kakhovskii, N.I., Svarka nerzhaveyushchikh stalei (Welding of Stainless Steels), Kiev: Tekhnika, 1968, pp. 104–107.

  43. Volchenko, V.N., Makarov, E.L., and Ship, V.V., Svarka i svarivaemye materialy: Spravochnik, Tom 1: Svarivaemost’ materialov (Welding and Welded Materials: Handbook, vol. 1: Materials Weldability), Moscow: Metallurgy, 1991.

  44. Estill, W.B., Jones, H.D., and Benthusen, D.E., Electron microprobe computer imaging, Proc. 9th Annu. Conf., Ottawa, Canada: Carleton Univ., 1974, pp. 35–36.

  45. Pridantsev, M.V., Talov, N.P., and Levin, D.L., Vysokoprochnye austenitnye stali (High-Strength Austenitic Steels), Moscow: Metallurgiya, 1969.

  46. Raynor, G.V. and Rivlin, V.G., Phase Equilibria in Iron Ternary Alloys, London: Inst. Met., 1988.

    Google Scholar 

  47. Rayaprolu, D.B. and Hendry, A., High nitrogen stainless steel wire, Mater. Sci. Technol., 2013, vol. 4, no. 2, pp. 136–145.

    Article  Google Scholar 

  48. Simmons, J.W., Influence of nitride (Cr2N) precipitation on the plastic flow behavior of high-nitrogen austenitic stainless steel, Scr. Metall. Mater., 1995, vol. 32, no. 2, pp. 265–270.

    Article  CAS  Google Scholar 

  49. Simmons, J.W., Atterridge, D.G., and Rawers, J.C., Sensitization of high-nitrogen austenitic stainless steels by dichromium nitride precipitation, Corrosion, 1994, vol. 50, no. 7, pp. 491–501.

    Article  CAS  Google Scholar 

  50. Lee, T.-H., Kim, S.-J., and Takaki, S., Time-temperature-precipitation characteristics of high-nitrogen austenitic Fe–18Cr–18Mn–2Mo–0.9N steel, Metall. Mater. Trans. A, 2006, vol. 37, no. 12, pp. 3445–3454.

    Article  Google Scholar 

  51. Vanderschaeve, F., Tillard, R., and Foct, J., Discontinuous precipitation of Cr2N in a high nitrogen, chromiummanganese austenitic stainless steel, J. Mater. Sci., 1995, vol. 30, pp. 6035–6046.

    Article  CAS  Google Scholar 

  52. Bannykh, O.A., Blinov, V.M., Kostina, M.V., and Chornamoryan, S.A., Structure and properties of high-nitrogen austenitic steels for heavily loaded welded constructions, Russ. Metall. (Metally), 2001, vol. 5, pp. 508–512.

    Google Scholar 

  53. https://pdfslide.net/documents/avesta-welding-how-toweld-fully-austenitic-stainless-steels.html?page=6

  54. Ogawa, M., Hiraoka, K., Katada, Y., Sagara, M., and Tsukamoto, S., Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel, ISIJ Int., 2002, vol. 42, no. 12, pp. 1391–1398.

    Article  CAS  Google Scholar 

  55. Cihal, V., Hubackova, J., and Kubelka, J., On the effect of alloying corrosion-resistant steel with nitrogen on their corrosion resistance, Kovove Mater., 1986, vol. 24, no. 1, pp. 3–24.

    CAS  Google Scholar 

  56. Fel’dgandler, E.G. and Savkina, L.Ya., Nitrogen in corrosion-resistant steels, Byull. Chern. Metall., 1990, no. 11, pp. 24–34.

  57. Briant, C.L., Milferd, R.A., and Hall, E.L., Sensitization of austenitic stainless steels, I. Controlled purity alloys, Corrosion, 1982, vol. 38, no. 9, pp. 468–477. https://doi.org/10.5006/1.3577362

    Article  CAS  Google Scholar 

  58. Milferd, R.A., Hall, E.L., and Briant, C.L., Sensitization of austenitic stainless steels II. Commercial purity alloys, Corrosion, 1983, vol. 39, no. 4, pp. 132–143. https://doi.org/10.5006/1.3580828

    Article  Google Scholar 

  59. Moon, J., Ha, H.-Y., Lee, T.-H., and Lee, C., Different aspect of pitting corrosion and interphase corrosion in the weld heat-affected zone of high-nitrogen Fe–18Cr–10Mn–N steel, Mater. Chem. Phys., 2013, vol. 142, pp. 556–563.

    Article  CAS  Google Scholar 

  60. Lippold, J.C. and Kotecki, D.J., Welding Metallurgy and Weldability of Stainless Steels, Hoboken: Wiley, 2005, pp. 201–211.

    Google Scholar 

  61. Sathirachinda, N., Pettersson, R., and Pan, J., Depletion effects at phase boundaries in 2205 duplex stainless steel characterized with SKPFM and TEM/EDS, Corros. Sci., 2009, vol. 51, no. 8, pp. 1850–1860.

    Article  CAS  Google Scholar 

  62. Kwok, C.T., Fong, S.L., Cheng, F.T., and Man, H.C., Pitting and galvanic corrosion behavior of laser-welded stainless steels, J. Mater. Process. Technol., 2006, vol. 176, nos. 1–3, pp. 168–178. https://doi.org/10.1016/j.jmatprotec.2006.03.128

  63. Grekula, A.I., Kujanpaa, V.P., and Karjalainen, L.P., Effect of solidification mode and impurities on pitting corrosion in AISI 316 GTA welds, Corrosion, 1984, vol. 40, pp. 569–572.

    Article  CAS  Google Scholar 

  64. Chattoraj, I., Bhattamishra, A.K., Jana, S., Das, S.K., Chakraborty, S.P., and De, P.K., The association of potentiokinetic reactivation and electrochemical pitting tests on a nitrogen bearing 19 Cr–17 Mn steel with its thermal history, Corros. Sci., 1996, vol. 38, pp. 957–969.

    Article  CAS  Google Scholar 

  65. Mohammed, R., Reddy, G.M., and Rao, K.S., Effect of filler wire composition on microstructure and pitting corrosion of nickel free high nitrogen stainless steel GTA welds, Trans. Indian Inst. Met., 2016, vol. 69, no. 10, pp. 1919–1927. https://doi.org/10.1007/s12666-016-0851-6

    Article  CAS  Google Scholar 

  66. du Toit, M., Filler metal selection for welding a high nitrogen stainless steel, J. Mater. Eng. Perform., 2002, vol. 11, no. 3, pp. 306–312.

    Article  CAS  Google Scholar 

  67. Bishokov, R.V., Baryshnikov, A.P., Gezha, V.V., and Mel’nikov, P.V., Welding materials and technology of high strength steels, Vopr. Materialoved., 2014, no. 2 (78), pp. 128–137.

  68. Bannykh, O.A., Yushchenko, K.A., Blinov, V.M., Chornamoryan, S.A., Solokha, A.M., Kazennov, N.P., et al., USSR Inventor’s Certificate no. 1595936, 1990.

  69. Blinov, V.M., Bannykh, O.A., Il’in, A.A., Sokolov, O.G., Kostina, M.V., Blinov, E.V., and Rigina, L.G., RF Patent 2303648, 2007.

  70. Bannykh, O.A., Blinov, V.M., Kostina, M.V., Blinov, E.V., and Zvereva, T.N., Weldability of corrosion-resistant high-nitrogen austenitic Kh22AG16N8M-type steels, Russ. Metall. (Metally), 2007, vol. 2007, pp. 348–354. https://doi.org/10.1134/S0036029507050023

    Article  Google Scholar 

  71. Gnedenkov, S.V., Sinebryukhov, S.L., Egorkin, V.S., Vyaliy, I.E., Imshinetskiy, I.M., Kostina, M.V., Muradyan, S.O., and Sergienko, V.I., Corrosion stability of austenitic steels 05Kh22AG15N8M2F and 12Kh18N10T in chloride-containing media, Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, pp. 910–915. https://doi.org/10.1134/S2070205117050057

    Article  CAS  Google Scholar 

  72. du Toit, M., The microstructure and mechanical properties of CromaniteTM welds, J. South. Afr. Inst. Min. Metall., 1999, vol. 99, no. 6, pp. 333–339. https://www.saimm.co.za/Journal/v099n06p333.pdf

    Google Scholar 

  73. Liu, Z., Fan, C., Chen, C., Ming, Z., Liu, A., Yang, C., Lin, S., and Wang, L., Optimization of the microstructure and mechanical properties of the high nitrogen stainless steel weld by adding nitrides to the molten pool, J. Manuf. Processes, 2020, vol. 49, pp. 355–364. https://doi.org/10.1016/j.jmapro.2019.12.017

    Article  Google Scholar 

  74. Kostina, V.S., Kostina, M.V., and Muradian, S.O., Influence of various welding methods on the structure and properties of welded austenite steel joints with nitrogen content ~0.5%, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 525, p. 012063.https://doi.org/10.1088/1757-899X/525/1/012063

  75. Kazakov, A.A., Fomina, O.V., Zhitinev, A.I., and Melnikov, P.V., Basic physicochemical concepts for controlling the δ-ferrite content when welding with austenite-ferrite materials, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 6, pp. 1325–1332. https://doi.org/10.1134/S207511331906011X

    Article  Google Scholar 

  76. Kostina, V.S., Kostina, M.V., Sharapov, M.G., Samodurov, I.O., and Muradyan, S.O., The investigation of the welded joints of the nitrogen containing cast austenitic steel, obtained by the manual arc welding, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 848, p. 012039. https://doi.org/10.1088/1757-899X/848/1/012039

  77. Zhang, Y., Jing, H., Xu, L., Han, Y., Zhao, L., and Xiao, B., Microstructure and mechanical performance of welded joint between a novel heat-resistant steel and Inconel 617 weld metal, Mater. Charact., 2018, vol. 139, pp. 279–292. https://doi.org/10.1016/j.matchar.2018.03.012

    Article  CAS  Google Scholar 

  78. Pehlke, R.D. and Elliott, J.F., Solubility of nitrogen in liquid iron alloys, Trans. AIME, 1960, vol. 218, pp. 1088–1101.

    CAS  Google Scholar 

  79. Bonnefois, B., Coudreuse, L., and Charles, J., A-TIG welding of high nitrogen alloyed stainless steels: A metallurgically high-performance welding process, Weld. Int., 2004, vol. 18, no. 3, pp. 208–212.

    Article  Google Scholar 

  80. http://www-eng.lbl.gov/~shuman/NEXT/MATERIALS&COMPONENTS/ss-weld_manual_avesta.pdf

  81. Fominykh, V.P. and Yakovlev, A.P., Ruchnaya dugovaya svarka (Manual Arc Welding), Moscow, Vysshaya Shkola, 1986.

  82. Zhao, L., Tian, Z.-L., Peng, Y., Ql, Y.-C., and Wang, Y.-J., Influence of nitrogen and heat input on weld metal of gas tungsten arc welded high nitrogen steel, J. Iron Steel Res., Int., 2007, vol. 14, no. 5, suppl. 1, pp. 259–262. https://doi.org/10.1016/S1006-706X(08)60090-4

    Article  Google Scholar 

  83. Hertzrnan, S., Parrerson, R.J., Blom, R., Kivineva, E., and Eriksson, J., Influence of shielding gas composition and welding parameters on the N-content and corrosion properties of welds in N-alloyed stainless steel, ISIJ Int., 1996, vol. 36, no. 7, pp. 968–976.

    Article  Google Scholar 

  84. Du Toit, M. and Pistorius, P.C., Nitrogen control during autogenous arc welding of stainless steel—Part 1: Experimental observations, Weld. J., 2003, vol. 82, no. 8, pp. 219–224. https://app.aws.org/wj/supplement/08-2003-DUTOIT-s.pdf

    Google Scholar 

  85. Fu, R., Qiu, L., Wang, C., Wang, Q., and Zheng, Y., Influence of welding parameters on nitrogen content in welding metal of 32Mn–7Cr–lMo–0.3N austenitic steel, J. Cent. South Univ. Technol., 2005, vol. 12, no. 1, pp. 22–26. https://doi.org/10.1007/s11771-005-0195-6

    Article  CAS  Google Scholar 

  86. Yushchenko, K.A., Solokha, A.M., and Kazennov, N.P., Technological peculiarities of welding high-nitrogen steels, Sbornik dokladov no. 2 Natsional’noi nauchno-tekhnicheskoi konferentsii “Vysokoazotistye stali 89” (Proc. no. 2 Natl. Sci.-Tech. Conf. “High-Nitrogen Steels 89”), 1989, pp. 12–15.

  87. GOST (State Standard) R ISO 6947-2017: Welding and Allied Processes. Welding Positions, 2017.

  88. German Inst. Standardisation, Standard DIN EN ISO 9606-1-2017: Qualification Testing of Welders–Fusion Welding–Part 1: Steels, Berlin: DIN, 2017.

    Google Scholar 

  89. German Inst. Standardisation, Standard DIN EN ISO 15614-1-2017: Specification and Qualification of Welding Procedures for Metallic Materials–Welding Procedure Test–Part 1: Arc and Gas Welding of Steels and Arc Welding of Nickel and Nickel Alloys, Berlin: DIN, 2017.

    Google Scholar 

  90. Mohammed, R., Madhusudhan Reddy, G., and Srinivasa Rao, K., Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties, Def. Technol., 2017, vol. 13, pp. 59–71.

    Article  Google Scholar 

  91. Du, W., Zhao, L., Tian, Z., Peng, Y., and Xu, L., Mechanical properties of arc welding heat-affected zone of high nitrogen steel, J. Iron Steel Res., Int., 2007, vol. 14, no. 5, suppl. 1, pp. 263–267. https://doi.org/10.1016/S1006-706X(08)60091-6

    Article  Google Scholar 

  92. Li, J., Li, H., Liang, Y., Liu, P., and Yang, L., The microstructure and mechanical properties of multi-strand, composite welding-wire welded joints of high nitrogen austenitic stainless steel, Materials, 2019, vol. 12, no. 18, p. 2944. https://doi.org/10.3390/ma12182944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Norris, J.T., Robino, C.V., Hirschfeld, D.A., and Perricone, M.J., Effects of laser parameters on porosity formation: Investigating millimeter scale continuous wave Nd:YAG laser welds, Weld. J., 2011, vol. 90, pp. 198–203.

    Google Scholar 

  94. Tate, S.B., Laser weldability of type 21Cr–6Ni–9Mn stainless steel, Mines Theses & Dissertations, Colorado School of Mines, 2007. https://dspace.library.colostate.edu/handle/11124/17065

  95. Khan, P.A.A., Debroy, T., and David, S.A., Laser beam welding of high-manganese stainless steels—examination of alloying element loss and microstructural changes, Weld. Res. Suppl., 1988, vol. 67, no. 1, pp. 1–7. https://s3.us-east-1.amazonaws.com/WJ-www.aws.org/supplement/WJ_1988_01_s1.pdf

    Google Scholar 

  96. Iamboliev, T., Zumbilev, A., Kalev, L., Christov, S., Ianev, V., and Stang, R.G., Laser beam welding of high-nitrogen-containing austenitic stainless steel, Weld. J., 1999, vol. 78, no. 7, pp. 245–252.

    Google Scholar 

  97. Kostina, V.S., Kostina, M.V., Voronchuk, S.D., Muradyan, S.O., and Rigina, L.F., Structure and properties of the metal in the laser welding joints of an austenitic steel containing ~0.5% N in the as-cast and deformed states, Russ. Metall. (Metally), 2018, vol. 2018, no. 9, pp. 795–802. https://doi.org/10.1134/S0036029518090094

    Article  Google Scholar 

  98. Kumar, N., Arora, N., and Goel, S.K., Weld joint properties of nitrogen-alloyed austenitic stainless steel using multi-pass GMA welding, Arch. Civ. Mech. Eng., 2020, vol. 20, p. 82. https://doi.org/10.1007/s43452-020-00087-1

    Article  Google Scholar 

  99. Banov, M.D., Kazakov, Yu.V., Kozulin, M.G., et al., Svarka i rezka materialov: Uchebnoe posobie (Welding and Cutting Materials: Manual), Moscow: Akademiya, 2000.

  100. Kostina, M.V., Kostina, V.S., and Muradyan, S.O., Effect of a thermomechanical action on the structure and the mechanical properties of the welded joints of a hot-rolled austenitic nitrogen-bearing steel, Russ. Metall. (Matally), 2019, vol. 2019, no. 1, pp. 36–41. https://doi.org/10.1134/S0036029519010075

    Article  Google Scholar 

Download references

Funding

The work was carried out under the grant of the President of the Russian Federation MK-1100.2022.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kostina.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostina, V.S., Kostina, M.V. Welding of High-Nitrogen Austenitic Steels (Review). Inorg. Mater. Appl. Res. 14, 1152–1164 (2023). https://doi.org/10.1134/S2075113323050209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050209

Keywords:

Navigation