Skip to main content
Log in

Behavior of Dopant Ions in the Solution Synthesis of Substituted Calcium Phosphates

  • MATERIALS FOR HUMAN LIFE SUPPORT AND ENVIRONMENTAL PROTECTION
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The dependence of (Zn, Cu, Co, Ni, Mn)-substituted calcium phosphates on the synthesis method was studied. The phosphates were synthesized by precipitation from aqueous solution and by mechanoactivation-assisted heterophase synthesis. Phosphates with metal : phosphorus ratios of 1.5 and 1.67 were obtained, which are precursors of tricalcium phosphate and hydroxyapatite, respectively. The obtained samples were studied by AES-ICP and flame AAS. The contents of Zn, Cu, Co, Ni, and Mn in the samples and the mother liquors were quantitatively determined. It was found that the contents of Cu2+, Zn2+, Co2+, and Ni2+ ions in the phosphates are greatly underestimated in comparison with the calculated amounts introduced in the synthesis. Meanwhile, for tricalcium phosphate, precipitation from solution and the heterophase synthesis gave comparable values of the contents of the dopant ions. At the same time, the heterophase synthesis of substituted hydroxyapatites increases the content of the dopant ion in the product by ~48%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medicine, Russ. Chem. Rev., 2010, vol. 79, no. 1, pp. 13–30. https://doi.org/10.1070/RC2010v079n01ABEH004098

    Article  CAS  Google Scholar 

  2. Jeong, J., Kim, J.H., Shim, J.H., Hwang, N.S., and Heo, C.Y., Bioactive calcium phosphate materials and applications in bone regeneration, Biomater. Res., 2019, vol. 23, p. 4. https://doi.org/10.1186/s40824-018-0149-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chai, Y.C., Carlier, A., Bolander, J., Roberts, S.J., Geris, L., Schrooten, J., Van Oosterwyck, H., and Luyten, F.P., Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies, Acta Biomater., 2012, vol. 8, no. 11, pp. 3876–3887.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, J., Liu, Q., Guo, Z., Pan, H., Liu, Z., and Tang, R., Progress on biomimetic mineralization and materials for hard tissue regeneration, ACS Biomater. Sci. Eng., 2023, vol. 9, no. 4, pp. 1757–1773. https://doi.org/10.1021/acsbiomaterials.1c01070

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, Y., Yang, Y., and Deng, Y., Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration, Mater. Sci. Eng., C, 2019, vol. 99, pp. 770–782.

    Article  CAS  Google Scholar 

  6. Rau, J.V., Wu, V.M., Graziani, V., Fadeeva, I.V., Fomin, A.S., Fosca, M., and Uskoković, V., The bone building blues: Self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria, Mater. Sci. Eng., C, 2017, vol. 79, pp. 270–279.

    Article  CAS  Google Scholar 

  7. Sinusaite, L., Popov, A., Antuzevics, A., Mazeika, K., Baltrunas, D., Yang, J. C., Horng, J.L., Shi, S., Sekino, T., Ishikawa, K., Kareiva, A., and Zarkov, A., Fe and Zn co-substituted beta-tricalcium phosphate (β‑TCP): Synthesis, structural, magnetic, mechanical and biological properties, Mater. Sci. Eng., C, 2020, vol. 112, p. 110918.

  8. Wan, B., Wang, R., Sun, Y., Cao, J., Wang, H., Guo, J., and Chen, D., Building osteogenic microenvironments with strontium-substituted calcium phosphate ceramics, Front. Bioeng. Biotechnol., 2020, vol. 8, p. 591467. https://doi.org/10.3389/fbioe.2020.591467

  9. Fadeeva, I.V., Lazoryak, B.I., Davidova, G.A., Murzakhanov, F.F., Gabbasov, B.F., Petrakova, N.V., Fosca, M., Barinov, S.M., Vadalà, G., Uskoković, V., Zheng, Y., and Rau, J.V., Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications, Mater. Sci. Eng., C, 2021, vol. 129, p. 112410. https://doi.org/10.1016/j.msec.2021.112410

  10. Rau, J.V., Fadeeva, I.V., Fomin, A.S., Barbaro, K., Galvano, E., Ryzhov, A.P., Murzakhanov, F.F., Orlinskii, S.B., Antoniac, I., and Uskoković, V., Sic Parvis Magna: Manganese-substituted tricalcium phosphate and its biophysical properties, ACS Biomater. Sci. Eng., 2019, vol. 5, no. 12, pp. 6632–6644.

    Article  CAS  PubMed  Google Scholar 

  11. Fadeeva, I.V., Goldberg, M.A., Preobrazhensky, I.I., Mamin, G.V., Davidova, G.A., Agafonova, N.V., Fosca, M., Russo, F., Barinov, S.M., Cavalu, S., and Rau, J.V., Improved cytocompatibility and antibacterial properties of zinc-substituted brushite bone cement based on β-tricalcium phosphate, J. Mater. Sci.: Mater. Med., 2021, vol. 32, p. 99. https://doi.org/10.1007/s10856-021-06575-x

    Article  CAS  PubMed  Google Scholar 

  12. Antoniac, I.V., Filipescu, M., Barbaro, K., Bonciu, A., Birjega, R., Cotrut, C.M., Galvano, E., Fosca, M., Fadeeva, I.V., Vadalà, G., Dinescu, M., and Rau, J.V., Iron ion-doped tricalcium phosphate coatings improve the properties of biodegradable magnesium alloys for biomedical implant application, Adv. Mater. Interfaces, 2020, vol. 7, p. 2000531. https://doi.org/10.1002/admi.202000531

  13. Doan, V.H.M., Mondal, S., Vo, T.M.T., Ly, C.D., Vu, D.D., Nguen, V.T., Park, S., Choi, J., and Oh, J., Fluorescence conjugated nanostructured cobalt-doped hydroxyapatite platform for imaging-guided drug delivery application, Colloids Surf., B, 2022, vol. 214, p. 112458. https://doi.org/10.1016/j.colsurfb.2022.112458

  14. Mabilleau, G., Filmon, R., Petrov, P.K., Baslé, M.F., Sabokbar, A., and Chappard, D., Cobalt, chromium and nickel affect hydroxyapatite crystal growth in vitro, Acta Biomater., 2010, vol. 6, no. 4, pp. 1555–1560. https://doi.org/10.1016/j.actbio.2009.10.035

    Article  CAS  PubMed  Google Scholar 

  15. Fadeeva, I.V., Meditsinskaya keramika iz zameshchennykh fosfatov kaltsiya (Medical Ceramics of Substituted Calcium Phosphates), Moscow: Universitet, 2016.

  16. Chaikina, M.V., Mechanochemical synthesis of isomorphous apatites as materials for bioceramics, Fiz. Mezomekh., 2004, vol. 7, no. 5, pp. 101–110

    CAS  Google Scholar 

  17. Syukkalova, E.A., Sadetskaya, A.V., Demidova, N.D., Bobrysheva, N.P., Osmolowsky, M.G., Voznesenskiy, M.A., and Osmolovskaya, O.M., The effect of reaction medium and hydrothermal synthesis conditions on morphological parameters and thermal behaviour of calcium phosphate nanoparticles, Ceram. Int., 2021, vol. 47, no. 2, pp. 2809–2821.

    Article  CAS  Google Scholar 

  18. Altomare, A., Rizzi, R., Rossi, M., El Khouri, A., Elaatmani, M., Paterlini, V., Della Ventura, G., and Capitelli, F., New Ca2.90(Me2+)0.10(PO4)2 β-tricalcium phosphates with Me2+ = Mn, Ni, Cu: Synthesis, crystal-chemistry, and luminescence properties, Crystals, 2019, vol. 9, no. 6, p. 288. https://doi.org/10.3390/cryst9060288

    Article  CAS  Google Scholar 

  19. Kiselev, Yu.M., Khimiya koordinatsionnykh soedinenii, v 2 chastyakh (Chemistry of Coordination Compounds, in 2 parts), Moscow: Yurait, 2017, part 2, p. 229.

  20. Bakheet, A.M.A., Saeed, M.A., Isa, A.R.B.M., and Sahnoun, R., First principles study of the physical properties of pure and doped calcium phosphate biomaterial for tissue engineering, Nanobiomater. Hard Tissue Eng., 2016, vol. 4, pp. 215–240.

    CAS  Google Scholar 

  21. Belik, A.A., Izumi, F., Stefanovich, S.Y., Malakho, A.P., Lazoryak, B.I., Leonidov, I.A., Leonidova, O.N., and Davydov, S.A., Polar and centrosymmetric phases in solid solutions Ca3 – xSrx(PO4)2 (0 ≤ x ≤ 16/7), Chem. Mater., 2002, vol. 14, pp. 3197–3205.

    Article  CAS  Google Scholar 

  22. Deyneko, D.V., Fadeeva, I.V., Borovikova, E.Y., Dzhevakov, P.B., Slukin, P. V., Zheng, Y., Xia, D., Lazoryak, B.I., and Rau, J.V., Antimicrobial properties of Co-doped tricalcium phosphates Ca3 – 2x(M'M")x(PO4)2 (M = Zn2+, Cu2+, Mn2+ and Sr2+), Ceram. Int., 2022, vol. 48, no. 20, pp. 29770–29781. https://doi.org/10.1016/j.ceramint.2022.06.237

    Article  CAS  Google Scholar 

  23. Fadeeva, I.V., Fomin, A.S., Barinov, S.M., Davydova, G.A., Selezneva, I. I., Preobrazhenskii, I.I., Rusakov, M.K., Fomina, A.A., and Volchenkova, V.A., Synthesis and properties of manganese-containing calcium phosphate materials, Inorg. Mater., 2020, vol. 56, pp. 700–706.

    Article  CAS  Google Scholar 

  24. Stolyarova, I.A. and Filatova, M.P., Atomno-absorbtsionnaya spektrometriya pri analize mineral’nogo syr’ya (Atomic Absorption Spectrometry in Mineral Analysis), St.-Petersburg: Nedra, 1991, pp. 134–135.

  25. Atomno-emissionnyi analiz s induktsionnoi plazmoi. Itogi nauki i tehniki. Seriya Analiticheskaya khimiya (Atomic Emission Analysis with Induction Plasma. Results of Science and Technology. Ser. Analytical Chemistry), Moscow: VINITI, 1990, vol. 2.

  26. Thompson, M.P. and Walsh, J.N., Handbook of Inductively Coupled Plasma Spectrometry, New York: Springer, 1983. https://doi.org/10.1007/978-1-4613-0697-9

    Book  Google Scholar 

Download references

Funding

This work was supported under state assignment no. 075-00715-22-00.

The synthesis of cation-substituted calcium phosphates was supported by the Russian Science Foundation (grant no. 22-23-00278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Fadeeva.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeeva, I.V., Forysenkova, A.A., Volchenkova, V.A. et al. Behavior of Dopant Ions in the Solution Synthesis of Substituted Calcium Phosphates. Inorg. Mater. Appl. Res. 14, 1292–1297 (2023). https://doi.org/10.1134/S2075113323050131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050131

Keywords:

Navigation