Skip to main content
Log in

The Effect of the Porosity of Materials Based on Tricalcium Phosphate on the Behavior of Mesenchymal Stem Cells

  • MATERIALS FOR HUMAN LIFE SUPPORT AND ENVIRONMENTAL PROTECTION
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The behavior of primarily isolated human stromal cells including dermal fibroblasts and mesenchymal stem/stromal cells (MSCs) upon interaction with ceramic materials based on tricalcium phosphate (TCP) with different pore sizes is studied. The effect of the emulsifier on the rheological characteristics of photosensitive emulsions based on calcium phosphate is investigated. The dependence of the conditions of preparation of photosensitive emulsions on the pore size in ceramic materials based on Ca3(PO4)2 is demonstrated. Studies of the biocompatibility of macroporous bioceramics upon cultivation of human stromal cells and effect of the samples of the material with different pore sizes on the in vitro transcriptional activity of MSCs are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Mironov, V., Visconti, R.P., Kasyanov, V., Forgacs, G., Drake, C.J., and Markwald, R.R., Organ printing: Tissue spheroids as building blocks, Biomaterials, 2009, vol. 30, no. 12, pp. 2164–2174. https://doi.org/10.1016/j.biomaterials.2008.12.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zocca, A., Colombo, P., Gomes, C.M., and Gunsher, J., Additive manufacturing of ceramics: Issues, potentialities, and opportunities, J. Am. Ceram. Soc., 2015, vol. 98, no. 7, pp. 1984–2001.

    Article  Google Scholar 

  3. Uchida, A., Nade, S.M.L., McCartney, E., and Ching, W., The use of ceramics for bone replacement. A comparative study of three different porous ceramics, J. Bone Jt. Surg., 1984, vol. 66-B, no. 2, pp. 269–275.

    Article  CAS  Google Scholar 

  4. LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D., and Legeros, J.P., Biphasic calcium phosphate bioceramics: Preparation, properties and applications, J. Mater. Sci.: Mater. Med., 2003, vol. 14, no. 3, pp. 201–209. https://doi.org/10.1023/A:1022872421333

    Article  CAS  PubMed  Google Scholar 

  5. Seidenstuecker, M., Kerr, L., Bernstein, A., Mayr, H.O., Suedkamp, N.P., Gadow, R., Krieg, P., Latorre, S.H., Thomann, R., Syrowatka, F., and Esslinger, S., 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds, Materials, 2017, vol. 11, no. 1, p. 13. https://doi.org/10.3390/ma11010013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cancedda, R., Dozin, B., Giannoni, P., and Quar-to, R., Tissue engineering and cell therapy of cartilage and bone, Matrix Biol., 2003, vol. 22, pp. 81–91.

    Article  CAS  PubMed  Google Scholar 

  7. Hsu, Y.H., Turner, I.G., and Miles, A.W., Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone, J. Mater. Sci.: Mater. Med., 2007, vol. 18, no. 12, pp. 2251–2256. https://doi.org/10.1007/s10856-007-3126-2

    Article  CAS  PubMed  Google Scholar 

  8. Barinov, S.M. and Komlev, V.S., Approaches to the fabrication of calcium phosphate-based porous materials for bone tissue regeneration, Inorg. Mater., 2016, vol. 52, no. 4, pp. 339–346. https://doi.org/10.1134/S0020168516040026

    Article  CAS  Google Scholar 

  9. Hasegawa, M., Sudo, A., Komlev, V.S., Barinov, S.M., and Uchida, A., High release of antibiotic from a novel hydroxyapatite with bimodal pore size distribution, J. Biomed. Mater. Res., Part B, 2004, vol. 70B, pp. 332–339.

    CAS  Google Scholar 

  10. Chang, B.S., Lee, C.K., Hong, K.S., Youn, H.J., Ryu, H.S., Chung, S.S., and Park, K.W., Osteoconduction at porous hydroxyapatite with various pore configurations, Biomaterials, 2000, vol. 21, no. 12, pp. 1291–1298.

    Article  CAS  PubMed  Google Scholar 

  11. Studart, A.R., Gonzenbach, U.T., Tervoort, E., and Gauckler, L.J., Processing routes to microporous ceramics: A review, J. Am. Ceram. Soc., 2000, vol. 89, pp. 1771–1789.

    Article  Google Scholar 

  12. Reddi, A.H., Role of morphogenetic proteins in skeletal tissue engineering and regeneration, Nat. Biotechnol., 1998, vol. 16, no. 3, pp. 247–252.

    Article  CAS  PubMed  Google Scholar 

  13. James, A.W., LaChaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X., Ting, K., and Soo, C., A review of the clinical side effects of bone morphogenetic protein-2, Tissue Eng., Part B, 2016, vol. 22, no. 4, pp. 284–297.

    CAS  Google Scholar 

  14. Rosa, N., Simoes, R., Magalhães, F.D., and Marques, A.T., From mechanical stimulus to bone formation: A review, Med. Eng. Phys., 2015, vol. 37, no. 8, pp. 719–728.

    Article  PubMed  Google Scholar 

  15. Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E., Matrix elasticity directs stem cell lineage specification, Cell, 2006, vol. 126, no. 4, pp. 677–689.

    Article  CAS  PubMed  Google Scholar 

  16. Bidan, C.M., Kommareddy, K.P., Rumpler, M., Kollmannsberger, P., Bréchet, Y.J. M., Fratzl, P., and Dunlop, J.W.C., How linear tension converts to curvature: Geometric control of bone tissue growth, PLoS One, 2012, vol. 7, no. 5, p. e36336. https://doi.org/10.1371/journal.pone.0036336

  17. Almubarak, S., Nethercott, H., Freeberg, M., Beaudon, C., Jha, A., Jackson, W., Marcucio, R., Miclau, T., Healy, K., and Bahney, C., Tissue engineering strategies for promoting vascularized bone regeneration, Bone, 2016, vol. 83, pp. 197–209.

    Article  CAS  PubMed  Google Scholar 

  18. Evdokimov, P.V., Tikhonova, S.A., Kiseleva, A.K., Filippov, Ya.Yu., Novoseletskaya, E.S., Efimenko, A.Yu., and Putlayev, V.I., Effect of the pore size on the biological activity of β-Ca3(PO4)2-based resorbable macroporous ceramic materials obtained by photopolymerization, Russ. J. Inorg. Chem., 2021, vol. 66, no. 11, pp. 1609–1615. https://doi.org/10.1134/S0036023621110061

    Article  CAS  Google Scholar 

  19. Tikhonova, S.A., Evdokimov, P.V., Prosvirnin, D.V., and Putlyaev, V.I., Formation of porous Ca3(PO4)2-based ceramic from photocurable emulsions, Inorg. Mater.: Appl. Res., 2022, vol. 13, pp. 205–210. https://doi.org/10.1134/S2075113322010361

    Article  Google Scholar 

  20. Novoseletskaya, E., Grigorieva, O., Nimiritsky, P., Basalova, N., Eremichev, R., Milovskaya, I., Kulebyakin, K., Kulebyakina, M., Rodionov, S., Omelyanenko, N., and Efimenko, A., Mesenchymal stromal cell-produced components of extracellular matrix potentiate multipotent stem cell response to differentiation stimuli, Front. Cell Dev. Biol., 2020, vol. 8, part 555378. https://doi.org/10.3389/fcell.2020.555378

Download references

ACKNOWLEDGMENTS

The results presented in the work were obtained on the equipment of the Research Equipment Sharing Center of Physical Methods for Studying Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, as well as on the equipment procured at the expense of the Development Program of the Moscow State University.

Funding

This work was financially supported by the Russian Science Foundation (grant no. 20-79-10210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Evdokimov, A. K. Kiseleva, D. S. Larionov, E. S. Novoseletskaya, A. Yu. Efimenko, I. M. Scherbakov, G. A. Shipunov, V. E. Dubrov or V. I. Putlayev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimov, P.V., Kiseleva, A.K., Larionov, D.S. et al. The Effect of the Porosity of Materials Based on Tricalcium Phosphate on the Behavior of Mesenchymal Stem Cells. Inorg. Mater. Appl. Res. 14, 1285–1291 (2023). https://doi.org/10.1134/S2075113323050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050118

Keywords:

Navigation