Skip to main content
Log in

Choice of Accelerators of the Vulcanization Group for Rubbers Based on Epichlorohydrin Rubber

  • GENERAL PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—

The effect of vulcanization accelerators on the structure and properties of rubbers based on Hydrin T6000 epichlorohydrin rubber was studied. As accelerators, we used mercaptobenzthiazole (MBT) in the amount of 1.5 pts. wt., tetramethylthiuram disulfide (TMTD) in the amount of 0.5–1.5 pts. wt., and N,N'‑diphenylguanidine (DPG) in the amount of 0.5–1.5 pts. wt., which represent a triple system of accelerators. The choice of accelerators is based on the possibility of obtaining a vulcanization spatial structure of different sulfide content: thiuram group accelerators promote the formation of mono- and disulfide bonds; guanidine group, polysulfide bonds; and thiazole group, from carbon-carbon to polysulfide with varying degrees of sulfide. According to the results of the study of physical and mechanical properties, the determination of the parameters of the spatial grid, and the study of the dynamic behavior of rubber, differences were revealed owing to the formation of a spatial structure with different types of crosslinks and density. It is shown that rubber containing 1.5 pts. wt. MBT, 0.5 pts. wt. DFG, and 0.5–1.0 pts. wt. TMTD possess the best set of properties owing to the manifestation of a synergistic effect on the formation of a vulcanization network of a certain density and the ratio of poly-, di-, and monosulfide crosslinks. Thus, the use of a group of accelerators with different functional effects makes it possible to obtain vulcanizates with an optimal set of technological and operational properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Hofmann, W., Vulkanisation & Vulkanisations-Hilfsmittel, Leverkusen: Farbenfabriken Bayer AG, 1965.

    Google Scholar 

  2. Ghorai, S., Jalan, A.K., Roy, M., et al., Turing of accelerator and curing system in devulcanized green natural rubber compounds, Polym. Test., 2018, vol. 69, pp. 133–145. https://doi.org/10.1016/j.polymertesting.2018.05.015

    Article  CAS  Google Scholar 

  3. Vostrikov, D.S., Bochkarev, E.S., Dimitrov, P.V., and Vaniev, M.A., Studying of efficient and semi-efficient curing systems influence on nitrile butadiene based rubbers, Izv. Volgograd. Gos. Tekh. Univ., 2019, no. 12 (235), pp. 126–131. https://www.elibrary.ru/item.asp?id=41572205

  4. Galimova, E.M., Primenenie i pererabotka SK. Sernaya vulkanizatsiya kauchukov (Application and Processing of SC. Sulfur Vulcanization of Rubbers), Nizhnekamsk: Nizhnekamsk Inst. Chem. Technol. Branch Kazan Natl. Res. Technol. Univ., 2012.

  5. Shashok, Zh.S., Kasperovich, A.V., and Uss, E.P., Osnovy retsepturostroeniya elastomernykh kompozitsii (Fundamentals of Elastomeric Composition Formulation), Minsk: Belarus. State Technol. Univ., 2013.

  6. Tager, A.A., Fiziko-khimiya polimerov (Physical Chemistry of Polymers), Moscow: Nauchn. Mir, 2007.

  7. Averko-Antonovich, I.Yu. and Bikmullin, R.T., Metody issledovaniya struktury i svoistv polimerov (Research Methods of Polymer Structure and Properties), Kazan: Kazan State Technol. Univ., 2002.

  8. Novakov, I.A., Vol’fson, S.I., Novopoltseva, O.M., and Krakshin, M.A., Reologicheskie i vulkanizatsionnye svoistva elastomernykh kompozitsii (Rheological and Vulcanization Properties of Elastomeric Compositions), Moscow: Akademkniga, 2006.

  9. Goryainov, G.I., Kapralova, V.M., Loboda, V.V., et al., Characteristics of 3D cross-linking in new poly(esterurethansiloxane) elastomers, Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ., Fiz.-Mat. Nauki, 2013, no. 1 (165), pp. 17–23.

  10. Chaikun, A.M., Eliseev, O.A., Naumov, I.S., et al., Compounding principles in the field of frost-resistant rubbers, Aviats. Mater. Tekhnol., 2013, no. 3, pp. 53–55.

  11. Kraus, G., Reinforcement of Elastomers, New York: Interscience, 1965.

    Google Scholar 

  12. Zhovner, N.A., Chirkova, N.A., and Khlebov, G.A., Struktura i svoistva materialov na osnove elastomerov: Uchebnoe posobie (Structure and Properties of Elastomer-Based Materials: Manual), Omsk: Extra Mural Inst. Textile Light Ind. Russia, 2003.

  13. Payne, A.R. and Whittaker, R.E., Low strain dynamic properties of filled rubbers, Rubber Chem. Technol., 1971, vol. 44, no. 2, pp. 440–478.

    Article  CAS  Google Scholar 

  14. Robertson, C.G. and Roland, C.M., Glass transition and interfacial segmental dynamics in polymer-particle composites, Rubber Chem. Technol., 2008, vol. 81, no. 3, pp. 506–522.

    Article  CAS  Google Scholar 

  15. Bohm, G.A., Tomaszewski, W., Cole, W., et al., Furthering the understanding of the non linear response of filler reinforced elastomers, Polymer, 2010, vol. 51, no. 9, pp. 2057–2068. https://doi.org/10.1016/j.polymer.2010.01.047

    Article  CAS  Google Scholar 

  16. Kalfus, J. and Jancar, J., Elastic response of nanocomposite poly(vinylacetate)-hydroxyapatite with varying particle shape, Polym. Compos., 2007, vol. 28, no. 3, pp. 365–371.

    Article  CAS  Google Scholar 

  17. Jancar, J., Douglas, J.F., Starr, F.W., et al., Current issues in research on structure-property relationships in polymer nanocomposites, Polymer, 2010, vol. 51, no. 15, pp. 3321–3343.

    Article  CAS  Google Scholar 

  18. Garmonova, I.V., Sinteticheskii kauchuk (Synthetic Rubber), Leningrad: Khimiya, 1976.

Download references

Funding

This study was carried out within the framework of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation no. 122011100162-9, FWRS-2021-0004, using the scientific equipment of the Center for Collective Use of the FRC Yakut Science Center, Siberian Branch, Russian Academy of Sciences, grant no. 13, TsKP.21.0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Davydova.

Additional information

Translated by K. Gumerov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydova, M.L., Khaldeeva, A.R., Fedorova, A.F. et al. Choice of Accelerators of the Vulcanization Group for Rubbers Based on Epichlorohydrin Rubber. Inorg. Mater. Appl. Res. 14, 1321–1326 (2023). https://doi.org/10.1134/S2075113323050076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050076

Keywords:

Navigation