Skip to main content
Log in

Influence of Upgoing Quenching on Structure and Corrosion Properties of Alloy D16

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

This paper presents the results of a study on the influence of heat treatment, including water quenching, cooling of a quenched alloy in liquid nitrogen, holding in liquid nitrogen, and upgoing quenching (heating in hot mineral oil), and natural or artificial aging on the structure, residual stresses, and anticorrosion properties of a D16 deformed aluminum alloy. The structure is studied by light microscopy, transmission electron microscopy, and X-ray diffraction. Residual stresses are determined by the hole drilling method. The corrosion properties are examined using polarization resistance, zero resistance amperometry, electrochemical impedance spectroscopy, and metallography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Croucher, T., Minimizing machining distortion in aluminum alloys through successful application of uphill quenching—a process overview, in Quenching and Cooling, Residual Stress and Distortion Control, Cana-le, L. and Narazaki, M., Eds., West Conshohocken, PA: ASTM Int., 2010, pp. 332–351. https://doi.org/10.1520/STP49158S

    Book  Google Scholar 

  2. Puchkov, Y.A., Yanlun, W., Polyanskii, V.M., et al., Study of alloy V91 of the system Al–Zn–Mg–Cu system supercooled solid solution decomposition, Met. Sci. Heat Treat., 2010, vol. 52, pp. 362–367. https://doi.org/10.1007/s11041-010-9283-9

    Article  CAS  Google Scholar 

  3. Benariev, I., Puchkov, Yu.A., Klochkov, G.G., Loshchinin, Yu.V., and Sbitneva, S.V., Effect of cooling rate under quenching on the structure and properties of sheets made of high-tech alloy V-1341 of the Al–Mg–Si system, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 202–207. https://doi.org/10.1134/S2075113320010074

    Article  Google Scholar 

  4. Puchkov, Yu.A., Polyanskii, V.M., and Sedova, L.A., A study of the effect of modes of isothermal quenching on the structure and properties of alloy V-1341T, Met. Sci. Heat Treat., 2019, vol. 61, pp. 83–89. https://doi.org/10.1007/s11041-019-00380-8

    Article  CAS  Google Scholar 

  5. Simencio, E.C.A., Totten, G.E., and Canale, L.C.F., Uphill quenching of aluminum: a process overview, Int. Heat Treat. Surf. Eng., 2011, vol. 5, no. 1, pp. 26–30.

    Article  Google Scholar 

  6. Lados, D.A., Apelian, D., and Wang, L., Minimization of residual stress in heat-treated Al–Si–Mg cast alloys using uphill quenching: Mechanisms and effects on static and dynamic properties, Mater. Sci. Eng., A, 2010, vol. 527, nos. 13–14, pp. 3159–3165.

  7. Mai, X.D., Puchkov, Yu.A., and Shcherbakov, S.P., Effect of uphill quenching on residual stresses and properties of aluminium alloy D16, Zagot. Proizvod. Mashinostr., 2020, vol. 18, no. 3, pp. 125–129.

    Google Scholar 

  8. Gruber, B., Weißensteiner, I., Kremmer, Th., Grabner, F., Falkinger, G., Schökel, A., Spieckermann, F., Schäublin, R., Uggowitzer, P.J., and Pogatscher, S., Mechanism of low temperature deformation in aluminium alloys, Mater. Sci. Eng., A, 2020, vol. 795, p. 139935. https://doi.org/10.1016/j.msea.2020.139935

  9. Mai, X.D., Gnevko, A.I., and Puchkov, Yu.A., Study of cryogenic treatment influence on residual stresses and properties of D16 aluminium alloy, Aviats. Mater. Tekhnol., 2020, no. 2 (59), pp. 25–31.

  10. Mai, X.D., Gnevko, A.I., Puchkov, Yu.A., Plokhih, A.I., Kuranov, A.E., and Yaremenko, O.B., Influence of cryogenic treatment and thermal shock on quenching stresses and properties of alloy D16, Zh. Sib. Fed. Univ. Tekh. Tekhnol., 2020, vol. 13, no. 4, pp. 473–486.

    Google Scholar 

  11. Mai, X.D., Puchkov, Y.A., and Berezina, S.L., Influence of uphill quenching on residual stresses and properties of alloy D16, Mater. Today: Proc., 2021, vol. 38, no. 4, pp. 1294–1298.

    Google Scholar 

  12. Lim, H.-J., Ko, D.-H., Ko, D.-C., and Kim, B.-M., Reduction of residual stress and improvement of dimensional accuracy by uphill quenching for a l6061 tube, Metall. Mater. Trans. B, 2014, vol. 45, no. 2, pp. 472–481.

    Article  CAS  Google Scholar 

  13. Zhang, L., Feng, X., Li, Z., and Liu, C., FEM simulation and experimental study on the quenching residual stress of aluminum alloy 2024, Proc. Inst. Mech. Eng., Part B, 2013, vol. 227, no. 7, pp. 954–964.

    CAS  Google Scholar 

  14. Wang, S.C. and Starink, M.J., Two types of S phase precipitates in Al–Cu–Mg alloys, Acta Mater, 2007, vol. 55, pp. 933–941.

    Article  CAS  Google Scholar 

  15. Chen, L., Myung, N., Sumodjo, P.T.A., and Nobe, K., A comparative electrodissolution and localized corrosion study of 2024Al in halide media, Electrochim. Acta, 1999, vol. 44, pp. 2751–2764.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Puchkov.

Additional information

Translated by N. Bogacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchkov, Y.A. Influence of Upgoing Quenching on Structure and Corrosion Properties of Alloy D16. Inorg. Mater. Appl. Res. 14, 1121–1129 (2023). https://doi.org/10.1134/S2075113323040305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323040305

Keywords:

Navigation