Skip to main content
Log in

Influence of the Nature of Monomer on Electropolymerization Processes and Physical and Chemical Properties of Films Based on Hydroxy-Substituted Tetraphenylporphyrins

  • GENERAL-PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The ability of oxidative polymerization of tetraphenylporphyrin derivatives from ethanol solution was studied: 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin, 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin, Zn-5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin, Zn-5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin. The polymerization of 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin does not occur; three of the four studied porphyrins form thin transparent polyporphyrin films tightly adhered to the electrode surface. The influence of the nature of the monomer, the deposition mode, and the supporting electrolyte used on the process of electropolymerization and the properties of the deposited polyporphyrin films were studied. The spectral changes observed during film deposition indicate that the generation of the polyporphyrin films occurs through the formation of C–O–C bonds and the preservation of the porphyrin macroheterocycle in polyporphyrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Nekrasov, A.A. and Vannikov, A.V., Spectroelectrochemical processes in polyaniline films prepared by different methods, Russ. J. Electrochem., 2011, vol. 47, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  2. Vernitskaya, T.V. and Efimov, O.N., Polypyrrole: A conducting polymer (synthesis, properties and applications), Russ. Chem. Rev., 1997, vol. 66, no. 5, pp. 443–457.

    Article  Google Scholar 

  3. Abruña, H.D., Coordination chemistry in two dimensions: Chemically modified electrodes Coord, Chem. Rev., 1988, vol. 86, pp. 135–189.

    Google Scholar 

  4. Murray, R.W., in Electroanalytical Chemistry, Bard, A.J., Ed., New York: Dekker, 1984, vol. 13.

    Google Scholar 

  5. Katz, H.E. and Huang, J., Thin-film organic electronic devices, Annu. Rev. Mater. Res., 2009, vol. 39, pp. 71–92.

    Article  CAS  Google Scholar 

  6. Gervaldo, M., Funes, M., Durantini, J., Fernandez, L., Fungo, F., and Otero, L., Electrochemical polymerization of palladium (II) and free base 5,10,15,20-tetrakis(4-N,N-diphenylaminophenyl)porphyrins: Its applications as electrochromic and photoelectric materials, Electrochim. Acta, 2010, vol. 55, pp. 1948–1957.

    Article  CAS  Google Scholar 

  7. Kobayashi, T., Yoneyama, H., and Tamura, H., Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes, J. Electroanal. Chem. Interfacial Electrochem., 1984, vol. 177, nos. 1–2, pp. 281–291.

  8. Gendron, D. and Leclerc, M., New conjugated polymers for plastic solar cells, Energy Environ. Sci., 2011, vol. 4, pp. 1225–1237.

    Article  CAS  Google Scholar 

  9. Takahashi, K., Nakajima, I., Imoto, K., Yamaguchia, T., Komura, T., and Murata, K., Sensitization effect by porphyrin in polythiophene/perylene dye two-layer solar cells, Sol. Energy Mater. Sol. Cells, 2003, vol. 76, pp. 115–124.

    Article  CAS  Google Scholar 

  10. Yang, Y. and Wudl, F., Organic electronics: From materials to devices, Adv. Mater., 2009, vol. 21, nos. 14–15, pp. 1401–1403.

  11. Noufi, R., Tenth, D., and Warren, L.F., Protection of n-GaAs photoanodes with photoelectrochemically generated polypyrrole films, J. Electrochem. Soc., 1980, vol. 127, no. 10, pp. 2310–2312.

    Article  CAS  Google Scholar 

  12. Durantini, J., Morales, G.M., Santo, M., Funes, M., Durantini, E.N., Fungo, F., Dittrich, Th., Otero, L., and Gervaldo, M., Synthesis and characterization of porphyrin electrochromic and photovoltaic electropolymers, Org. Electron., 2012, vol. 13, no. 4, pp. 604–614.

    Article  CAS  Google Scholar 

  13. Harima, Y., Miyatake, M., and Yamashita, K., Synergism in photocurrent induced by simultaneous illumination of porphyrin solids with visible and near-infrared lights, Chem. Phys. Lett., 1992, vol. 200, no. 3, pp. 263–266.

    Article  CAS  Google Scholar 

  14. Gregg, B.A. and Kim, Y.I.J., Redox polymer contacts to molecular semiconductor films: Toward kinetic control of interfacial exciton dissociation and electron-transfer processes, Phys. Chem., 1994, vol. 98, no. 9, pp. 2412–2417.

    Article  CAS  Google Scholar 

  15. Kroon, J.M., Schenkels, P.S., Van Dijk, M., and Sudhölter, E.J.R., Thermotropic phase behavior and aggregation properties of tetraphenylporphyrins carrying oligo (ethylene oxide) alkoxy units, J. Mater. Chem., 1995, vol. 5, no. 9, pp. 1309–1316.

    Article  CAS  Google Scholar 

  16. Ramachandraiah, G., Bedioui, F., Devynck, J., Serrar, M., and Bied-Charreton, C., Electrochemical preparation and characterization of zinc porphyrin-coated electrodes, J. Electroanal. Chem., 1991, vol. 319, nos. 1–2, pp. 395–402.

  17. Ureta-Zañartu, M.S., Alarcón, A., Berríos, C., Cardenas-Jirón, G.I., Zagal, J., and Gutiérrez, C., Electropreparation and characterization of polyNiTSPc films. An EQCM study, J. Electroanal. Chem., 2005, vol. 580, no. 1, pp. 94–104.

    Article  CAS  Google Scholar 

  18. Ozoemena, K.I. and Nyokong, T., Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer, Talanta, 2005, vol. 67, no. 1, pp. 162–168.

    Article  CAS  PubMed  Google Scholar 

  19. Tesakova, M.V., Semeikin, A.S., and Parfenyuk, V.I., Electroconductive films based on amino-substituted tetraphenylporphyrins and their metal copper complexes, J. Porphyrins Phthalocyanines, 2016, vol. 20, pp. 793–803.

    Article  CAS  Google Scholar 

  20. Kuzmin, S.M., Chulovskaya, S.A., Koifman, O.I., and Parfenyuk, V.I., Poly-porphyrin electrocatalytic films obtained via new superoxide-assisted electrochemical deposition method, Electrochem. Commun., 2017, vol. 83, pp. 28–32.

    Article  CAS  Google Scholar 

  21. Tesakova, M.V. and Parfenyuk, V.I., Electroconductive poliporphyrin films based on 5,10,15,20-tetrakis(4'-aminophenyl)porphyrin, Perspekt. Mater., 2015, no. 10, pp. 12–21.

  22. Kuzmin, S.M., Chulovskaya, S.A., Tesakova, M.V., Semeikin, A.S., and Parfenyuk, V.I., Solvent and electrode influence on electrochemical forming of poly-Fe(III)-aminophenylporphyrin films, J. Porphyrins Phthalocyanines, 2017, vol. 21, pp. 555–567.

    Article  CAS  Google Scholar 

  23. Ureta-Zañartu, M.S., Berríos, C., Pavez, J., Zagal, J., and Marco, J.F., Electro-oxidation of 2-chlorophenol on polyNiTSPc-modified glassy carbon electrodes, J. Electroanal. Chem., 2003, vol. 553, pp. 147–156.

    Article  CAS  Google Scholar 

  24. Shen, Y., Liu, J., Jiang, J., Liu, B., and Dong, S., Fabrication of metalloporphyrin-polyoxometalyte hybrid film by layer-by-layer method and its catalysis for dioxygen reduction, Electroanalysis, 2002, vol. 14, no. 22, pp. 1557–1563.

    Article  CAS  Google Scholar 

  25. Noskov, A.V., Tesakova, M.V., Popov, I.A., and Parfenyuk, V.I., Kinetics of oxygen electroreduction reaction on rotating electrode activated by derivatives of tetraphenylporphyrin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, no. 12, pp. 55–58.

    Google Scholar 

  26. Tesakova, M.V., Noskov, A.V., Parfenyuk, V.I., Baza-nov, M.I., and Berezina, N.M., Kinetic parameters of the electroreduction of oxygen on a graphitized carbon electrode activated by tetrakis(4-methoxyphenyl)porphyrin and its cobalt complexes, Russ. J. Phys. Chem. A., 2012, vol. 86, no. 1, pp. 9–13.

    Article  CAS  Google Scholar 

  27. Kimura, M., Yamaguchi, Y., Koyama, T., Hanabusa, K., and Shirai, H., Catalytic oxidation of 2-mercaptoethanol by cationic water-soluble phthalocyaninatocobalt(II) complexes, J. Porphyrins Phthalocyanines, 1997, vol. 1, pp. 309–313.

    Article  CAS  Google Scholar 

  28. Tesakova, M.V. and Parfenyuk, V.I., Modification of the surface of electrodes by polyporphyrin films for electrocatalytic reduction of oxygen, Gal’vanotekh. Obrab. Poverkhn., 2019, vol. 27, no. 4, pp. 19–27.

    Google Scholar 

  29. Tesakova, M.V., Lutovac, M., and Parfenyuk, V.I., Electrodeposition of catalytically active polyporphyrin films of metal complexes of amino-substituted tetraphenylporphyrins, J. Porphyrins Phthalocyanines, 2018, vol. 22, pp. 1047–1053.

    Article  CAS  Google Scholar 

  30. Syrbu, S.A. and Semeikin, A.S., Synthesis of (hydroxyphenyl) porphyrins, Russ. J. Org. Chem., 1999, vol. 35, no. 8, pp. 1236–1240.

    CAS  Google Scholar 

  31. Semeikin, A.S., Koifman, O.I., Berezin, B.D., and Syrbu, S.A., Synthesis of tetraphenylporphins with active groups in the phenyl rings. 2. Preparation of tetrakis(hydroxyphenyl)porphins, Chem. Heterocycl. Compd., 1983, vol. 19, no. 10, pp. 1082–1083.

    Article  Google Scholar 

  32. Adler, A.D., Longo, F.R., Kampas, F., and Kim, J., On the preparation of metalloporphyrins, J. Inorg. Nucl. Chem., 1970, vol. 32, no. 7, pp. 2443–2445.

    Article  CAS  Google Scholar 

  33. Walter, M.G. and Wamser, C.C., Synthesis and characterization of electropolymerized nanostructured aminophenylporphyrin films, J. Phys. Chem. C, 2010, vol. 114, pp. 7563–7574.

    Article  CAS  Google Scholar 

  34. Day, N.U., Walter, M.G., and Wamser, C.C., Preparations and electrochemical characterizations of conductive porphyrin polymers, J. Phys. Chem. C, 2015, vol. 119, pp. 17378–17388.

    Article  CAS  Google Scholar 

  35. Tesakova, M.V., Kuzmin, S.M., and Parfenyuk, V.I., An electrochemical quartz crystal microbalance study of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin electro-polymerization process, J. Porphyrins Phthalocyanines, 2019, vol. 23, nos. 11–12, pp. 1495–1504.

  36. De Luca, G., Romeo, A., and Scolaro, L.M., Aggregation properties of hyperporphyrins with hydroxyphenyl substituents, J. Phys. Chem. B, 2006, vol. 110, no. 29, pp. 14135–14141.

    Article  CAS  PubMed  Google Scholar 

  37. Mason, S.F., The infrared spectra of N-heteroaromatic systems. Part I. The porphins, J. Chem. Soc., 1958, pp. 976–982.

  38. Mamardashvili, N.Z. and Golubchikov, O.A., Spectral properties of porphyrins, their precursors and derivatives, Russ. Chem. Rev., 2001, vol. 70, pp. 577–606.

    Article  CAS  Google Scholar 

  39. Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Chichester: Wiley, 2004.

    Google Scholar 

  40. Mohan, J., Organic Spectroscopy: Principles and Applications, CRC Press, 2004.

    Google Scholar 

  41. Smith, B.C., Infrared Spectral Interpretation: A Systematic Approach, CRC Press, 2018.

    Book  Google Scholar 

  42. Pejov, L. and Petrusevski, V.M., Fourier transform infrared study of perchlorate anions isomorphously isolated in potassium permanganate matrix. Vibrational anharmonicity and pseudo-symmetry effects, J. Phys. Chem. Solids, 2002, vol. 63, no. 10, pp. 1873–1881.

    Article  CAS  Google Scholar 

  43. Zapata, F. and García-Ruiz, C., The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy, Spectrochim. Acta, Part A. 2018, vol. 189, pp. 535–542.

    Article  CAS  Google Scholar 

  44. Samet, Y., Kraiem, D., and Abdelhédi, R., Electropolymerization of phenol, o-nitrophenol and o-methoxyphenol on gold and carbon steel materials and their corrosion protection effects, Prog. Org. Coat., 2010, vol. 69, pp. 335–343.

    Article  CAS  Google Scholar 

  45. Sayyah, S.M., Khaliel, A.B., Azooz, R.E., and Mohamed, F., Electropolymerization of some ortho-substituted phenol derivatives on Pt-electrode from aqueous acidic solution; kinetics, mechanism, electrochemical studies and characterization of the polymer obtained, Electropolymerization, Schab-Balcerzak, E., Ed., IntechOpen, 2011.

  46. Kiss, L., Bősz, D., Kovács, F., Li, H., Nagy, G., and Kunsági-Máté, S., Investigation of phenol electrooxidation in aprotic non-aqueous solvents by using cyclic and normal pulse voltammetry, Polym. Bull., 2019, vol. 76, pp. 5849–5864.

    Article  CAS  Google Scholar 

  47. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., Mechanism and superoxide scavenging activity of hydroxy substituted tetraphenylporphyrins via coulometric approach, J. Electroanal. Chem., 2016, vol. 772, pp. 80–88.

    Article  CAS  Google Scholar 

  48. Lu, G., Zhang, X., Cai, X., and Jiang, J., Tuning the morphology of self-assembled nanostructures of amphiphilic tetra(phydroxyphenyl)porphyrins with hydrogen bonding and metal–ligand coordination bonding, J. Mater. Chem., 2009, vol. 19, pp. 2417–2424.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.S. Semeikin (Ivanovo State University of Chemical Technology) for providing the objects of study. We are grateful to the center of collective use of scientific equipment (Ivanovo State University of Chemical Technology, Ivanovo) for providing the equipment for studies.

Funding

This work was supported by the Ministry of Education and Science of Russia by the State Assignment no. 01201260482.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Tesakova or V. I. Parfenyuk.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesakova, M.V., Parfenyuk, V.I. Influence of the Nature of Monomer on Electropolymerization Processes and Physical and Chemical Properties of Films Based on Hydroxy-Substituted Tetraphenylporphyrins. Inorg. Mater. Appl. Res. 12, 1294–1301 (2021). https://doi.org/10.1134/S2075113321050415

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050415

Keywords:

Navigation