Skip to main content
Log in

Structure, Phase Composition, and Mechanical Properties of Composites Based on ZrO2 and Multi-Walled Carbon Nanotubes

  • GENERAL PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

In this work, composites based on yttria-stabilized zirconia (3Y-TZP) with additives of 1.5 and 10 wt % multi-walled carbon nanotubes (MWCNTs) were studied. Samples were obtained by spark plasma sintering (SPS) at a temperature of 1500°C. It was found that, after high-temperature sintering, MWCNTs retain their structure and are located along the ZrO2 grain boundaries forming a network structure. It was found that the addition of 1 wt % MWCNTs increases the relative composite density from 98.3 to 99.0%. It was noted that nanotubes can significantly affect the phase composition of composites. The addition of 5 wt % MWCNT partially limits the monoclinic–tetragonal phase transition of ZrO2, and the addition of 10 wt % MWCNTs leads to the formation of a cubic phase of zirconium carbide. It was found that fracture toughness of the composite with 10 wt % MWCNTs increases from 4.0 to 5.7 MPa m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zhigachev, A.O., Golovin, Yu.I., Umrikhin, A.V., Korenkov, V.V., Tyurin, A.I., Rodaev, V.V., and D’yachek, T.A., Keramicheskie materialy na osnove dioksida tsirkoniya (Ceramic Materials Based on Zirconia), Moscow: Technosphere, 2018.

  2. Yin, L., Nakanishi, Y., Alao, A.R., Song, X.F., Abduo, J., and Zhang, Y., A review of engineered zirconia surface in biomedical applications, Procedia CIRP, 2017, vol. 65, pp. 284–290.

    Article  Google Scholar 

  3. Hannink, R.H.J., Kelly, P.M., and Muddle, B.C., Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 2000, vol. 83, pp. 461–487.

    Article  CAS  Google Scholar 

  4. Buyakov, A.S., Zenkina, Yu.A., Buyakova, S.P., and Kulkov, S.N., Fractal dimension of fracture surface of porous ZrO2–MgO composite, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 1253–1259. https://doi.org/10.1134/S2075113320050081

    Article  Google Scholar 

  5. Leonov, A.A., Kuzichkin, E.E., Shugurov, V.V., Teresov, A.D., Kalashnikov, M.P., Petyukevich, M.S., Polisadova, V.V., and Ivanov, Yu.F., Structure and properties of the surface layer of “Ti/SiC-ceramic” system irradiated by low-energy pulsed electron beam, J. Phys.: Conf. Ser., 2018, vol. 1115, art. ID 032040.

    Google Scholar 

  6. Ivanov, Yu., Shugurov, V., Kalashnikov, M., Leonov, A., Teresov, A., Petukevich, M., and Polisadova, V., Multilevel hierarchical structure formed in the film (Ti)/substrate (SiC-ceramics) system under irradiation by an intense pulsed electron beam, AIP Conf. Proc., 2018, vol. 2051, art. ID 020110.

    Article  Google Scholar 

  7. Leonov, A.A., Ivanov, Yu.F., Kalashnikov, M.P., Abdulmenova, E.V., Shugurov, V.V., and Teresov, A.D., Improving the mechanical properties of SiC-ceramics by means of vacuum electron-ion-plasma alloying with titanium, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 731, art. ID 012015.

  8. Mallakpour, S. and Khadem, E., Carbon nanotube–metal oxide nanocomposites: Fabrication, properties and applications, Chem. Eng. J., 2016, vol. 302, pp. 344–367.

    Article  CAS  Google Scholar 

  9. Palmero, P., Structural ceramic nanocomposites, a review of properties and powders’ synthesis methods, Nanomaterials, 2015, vol. 5, pp. 656–696. https://doi.org/10.3390/nano5020656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Silvestre, J., Silvestre, N., and Brito, J., An overview on the improvement of mechanical properties of ceramics nanocomposites, J. Nanomater., 2015, vol. 2015, art. ID 106494.

    Article  Google Scholar 

  11. Yu, M., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 2000, vol. 287, pp. 637–640.

    Article  CAS  Google Scholar 

  12. Kondoh, J., Shiota, H., Kawachi, K., and Nakatani, T., Yttria concentration dependence of tensile strength in yttria-stabilized zirconia, J. Alloy. Compd., 2004, vol. 365, pp. 253–258.

    Article  CAS  Google Scholar 

  13. Hassan, R., Nisar, A., Ariharan, S., Alam, F., Kumar, A., and Balani, K., Multi-functionality of carbon nanotubes reinforced 3 mol % yttria stabilized zirconia structural biocomposites, Mater. Sci. Eng., A, 2017, vol. 704, pp. 329–343.

    Article  CAS  Google Scholar 

  14. Datye, A., Wu, K., Gomes, G., Monroy, V., Lin, H., Vleugels, J., and Vanmeensel, K., Synthesis, microstructure and mechanical properties of yttria stabilized zirconia (3YTZP)—multi-walled nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on zirconia particles, Compos. Sci. Technol., 2010, vol. 70, pp. 2086–2092.

    Article  CAS  Google Scholar 

  15. Mazaheri, M., Mari, D., Schaller, R., Bonnefont, G., and Fantozzi, G., Processing of yttria stabilized zirconia reinforced with multi-walled carbon nanotubes with attractive mechanical properties, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 2691–2698.

    Article  CAS  Google Scholar 

  16. Leonov, A.A. and Abdulmenova, E.V., Alumina-based composites reinforced with single-walled carbon nanotubes, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 511, art. ID 012001.

  17. Leonov, A., Effect of alumina nanofibers content on the microstructure and properties of ATZ composites fabricated by spark plasma sintering, Mater. Today: Proc., 2019, vol. 11, pp. 66–71.

    CAS  Google Scholar 

  18. Cano-Crespo, R., Moshtaghioun, B.M., Gómez-García, D., Moreno, R., and Domínguez-Rodrígue, A., Graphene or carbon nanofiber-reinforced zirconia composites: Are they really worthwhile for structural applications? J. Eur. Ceram. Soc., 2018, vol. 38, pp. 3994–4002.

    Article  CAS  Google Scholar 

  19. Poyato, R., Morales-Rodríguez, A., Gutiérrez-Mora, F., Muñoz, A., and Gallardo-López, Á., Effect of acid-treatment and colloidal-processing conditions on the room temperature mechanical and electrical properties of 3YTZP/MWNT ceramic nanocomposites, Ceram. Int., 2017, vol. 43, pp. 16560–16568.

    Article  CAS  Google Scholar 

  20. Anstis, G.R., Chantikul, P., Lawn, B.N., and Marshall, D.B., A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 1981, vol. 64, pp. 533–538.

    Article  CAS  Google Scholar 

  21. Scherrer, P., Bestimmung der Größe und der inneren struktur von kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der gesellschaft der wissenschaften zu göttingen, Math.-Phys. Klasse, 1918, vol. 2, pp. 98–100.

    Google Scholar 

  22. Stokes, A.R. and Wilson, A.J.C., The diffraction of X rays by distorted crystal aggregates—I, Proc. Phys. Soc., 1944, vol. 56, pp. 174–181.

    Article  CAS  Google Scholar 

  23. Olek, M., Ostrander, J., Jurga, S., Mohwald, H., Kotov, N., Kempa, K., and Giersig, M., Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies, Nano Lett., 2004, vol. 4, pp. 1889–1895.

    Article  CAS  Google Scholar 

  24. Leonov, A.A. and Lyu, Kh.Ts., Study of dimensional characteristics of zirconia nanopowder, in Coll. Sci. Papers 6th Int. Sci. and Tech. Conf. of Young Scientists, Graduate Students and Students “High Technologies in Modern Science and Technology,” Tomsk, November 27–29, 2017, Tomsk: Tomsk. Politekh. Univ., 2017, pp. 72–73.

  25. Leonov, A.A., Dvilis, E.S., Khasanov, O.L., Paygin, V.D., Kalashnikov, M.P., Petukevich, M.S., and Panina, A.A., Ceramic composite based on zirconia reinforced by single-walled carbon nanotubes, Nanotechnol. Russia, 2019, vol. 14, pp. 118–124.

    Article  CAS  Google Scholar 

  26. Leonov, A.A., Khasanov, A.O., Danchenko, V.A., and Khasanov, O.L., Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 286, art. ID 012034.

  27. Zharikov, E.V., Duong, T.T.T., Faikov, P.P., Popova, N.A., and Sovyk, D.M., Reinforcement of Al2O3–MgO composite materials by multiwalled carbon nanotubes, Inorg. Mater.: Appl. Res., 2016, vol. 7, pp. 163–169. https://doi.org/10.1134/S2075113316020271

    Article  Google Scholar 

  28. Shim, D.H., Jung, S.S., Kim, H.S., Cho, H., Kim, J.K., Kim, T.G., and Yoon, S.J., Effect of carbon nanotubes on the properties of spark plasma sintered ZrO2/CNT composites, Arch. Metall. Mater., 2015, vol. 60, pp. 1315–1318.

    Article  CAS  Google Scholar 

  29. Poyato, R., Macías-Delgado, J., Gallardo-López, A., Muñoz, A., and Domínguez-Rodríguez, A., Microstructure and impedance spectroscopy of 3YTZP/SWNT ceramic nanocomposites, Ceram. Int., 2015, vol. 41, pp. 12861–12868.

    Article  CAS  Google Scholar 

  30. Shutilov, R.A., Myz’, A.L., Kuznetsov, V.L., and Karagedov, G.R., Conducting ceramic composites based on Al2O3, modified with multi-layered carbon nanotubes, Perspekt. Mater., 2016, no. 8, pp. 64–73.

  31. Bowen, P. and Carry, C., From powders to sintered pieces: Forming, transformations and sintering of nanostructured ceramic oxides, Powder Technol., 2002, vol. 128, pp. 248–255.

    Article  CAS  Google Scholar 

  32. Mazaheri, M., Valefi, M., Hesabi, Z.R., and Sadrnezhaad, S.K., Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process, Ceram. Int., 2009, vol. 35, pp. 13–20.

    Article  CAS  Google Scholar 

  33. Melk, L., Antti, M.L., and Anglada, M., Material removal mechanisms by EDM of zirconia reinforced MWCNT nanocomposites, Ceram. Int., 2016, vol. 42, pp. 5792–5801.

    Article  CAS  Google Scholar 

  34. Mohapatra, P., Rawat, S., Mahato, N., and Balani, K., Restriction of phase transformation in carbon nanotube–reinforced yttria–stabilized zirconia, Metall. Mater. Trans. A, 2015, vol. 46, pp. 2965–2974.

    Article  CAS  Google Scholar 

  35. Yi, J., Xue, W., Wang, T., and Xie, Z., Mechanical and electrical properties of chemically modified MWCNTs/3Y-TZP composites, Ceram. Int., 2015, vol. 41, pp. 9157–9162.

    Article  CAS  Google Scholar 

  36. Sun, J., Gao, L., Iwasa, M., Nakayama, T., and Niihara, K., Failure investigation of carbon nanotube/3YTZP nanocomposites, Ceram. Int., 2005, vol. 31, pp. 1131–1134.

    Article  CAS  Google Scholar 

  37. Ahmadi, A., Youzbashi, A.A., Golikand, A.N., Ebadzadeh, T., and Maghsoudipour, A., To evaluate the application of alkoxide sol-gel method in fabrication of 3YSZ-MWCNTs nanocomposites, in an attempt to improve its mechanical properties, J. Nanomater., 2014, vol. 2014, art. ID 867367.

    Article  Google Scholar 

  38. Schulz, U., Phase transformation in EB-PVD yttria partially stabilized zirconia thermal barrier coatings during annealing, J. Am. Ceram. Soc., 2000, vol. 83, pp. 904–910.

    Article  CAS  Google Scholar 

  39. Bocanegra-Bernal, M.H., Reyes-Rojas, A., Aguilar- Elguézabal, A., Torres-Moye, E., and Echeberria, J., X-ray diffraction evidence of a phase transformation in zirconia by the presence of graphite and carbon nanotubes in zirconia toughened alumina composites, Int. J. Refract. Met. Hard Mater., 2012, vol. 35, pp. 315–318.

    Article  CAS  Google Scholar 

  40. Leonov, A.A., Ivanov, Yu.F., Kalashnikov, M.P., Abdulmenova, E.V., Paygin, V.D., and Teresov, A.D., Effect of electron beam irradiation on structural phase transformations of zirconia-based composite reinforced by alumina nanofibers and carbon nanotubes, J. Phys.: Conf. Ser., 2019, vol. 1393, art. ID 012106.

    CAS  Google Scholar 

  41. Malek, O., Lauwers, B., Perez, Y., Baets, P., and Vleugels, J., Processing of ultrafine ZrO2 toughened WC composites, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 3371–3378.

    Article  CAS  Google Scholar 

  42. Moskala, N. and Pyda, W., Thermal stability of tungsten carbide in 7 mol % calcia-zirconia solid solution matrix heat treated in argon, J. Eur. Ceram. Soc., 2006, vol. 26, pp. 3845–3851.

    Article  CAS  Google Scholar 

  43. Kulkov, S.N., The structure transformations in nanocrystalline zirconia, Nucl. Instrum. Methods Phys. Res., Sect. A, 2007, vol. 575, pp. 109–112.

    CAS  Google Scholar 

  44. Buyakov, A.S. and Kulkov, S.N., Abnormal behavior of ZrO2–MgO porous ceramic composite under compression, AIP Conf. Proc., 2017, vol. 1882, art. ID 020010.

    Article  Google Scholar 

  45. Sharov, M.K. and Kabanova, K.A., Microdeformations of the crystal lattice of PbTe1 – xBrx solid solutions, Semiconductors, 2014, vol. 48, pp. 1405–1407. https://doi.org/10.1134/S1063782614110268

    Article  CAS  Google Scholar 

  46. Sciti, D., Guicciardi, S., and Nygren, M., Spark plasma sintering and mechanical behaviour of ZrC-based composites, Scripta Mater., 2008, vol. 59, pp. 638–641.

    Article  CAS  Google Scholar 

  47. Kim, D.I., Vu, D.T., Zhang, T., Li, M., Shen, L., Zhou, X., Jeong, M.Y., Han, Y.H., Kim, S., Yun, J., Huang, Q., and Lee, D.Y., Transition in micro/nano-scale mechanical properties of ZrO2/multi-wall carbon nanotube composites, J. Ceram. Soc. Jpn., 2014, vol. 122, pp. 1028–1031.

    Article  Google Scholar 

  48. Golovin, Yu.I., Tyurin, A.I., Korenkov, V.V., Rodaev, V.V., Zhigachev, A.O., Umrikhin, A.V., Pirozhkova, T.S., and Razlivalova, S.S., Effect of carbon nanotubes on strength characteristics of nanostructured ceramic composites for biomedicine, Nanotechnol. Russia, 2018, vol. 13, pp. 168–172. https://doi.org/10.1134/S1995078018020039

    Article  CAS  Google Scholar 

  49. Wu, W., Xie, Z., Xue, W., and Cheng, L., Toughening effect of multiwall carbon nanotubes on 3Y-TZP zirconia ceramics at cryogenic temperatures, Ceram. Int., 2015, vol. 41, pp. 1303–1307.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.V. Galunin, A.V. Melezhik, and A.G. Tkachev for the provided Taunit multi-walled carbon nanotubes.

Funding

This work was supported by the program of fundamental scientific research for 2019–2021, theme no. 0291-2019-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Leonov.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, A.A., Abdulmenova, E.V. & Kalashnikov, M.P. Structure, Phase Composition, and Mechanical Properties of Composites Based on ZrO2 and Multi-Walled Carbon Nanotubes. Inorg. Mater. Appl. Res. 12, 482–490 (2021). https://doi.org/10.1134/S2075113321020313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321020313

Keywords:

Navigation